首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interferon-induced human MxA protein belongs to the class of dynamin-like, large guanosine-5'-triphosphatases that are involved in intracellular vesicle trafficking and organelle homeostasis. MxA shares many properties with the other members of this protein superfamily, including the propensity to self-assemble and to associate with lipid membranes. However, MxA is unique in that it has antiviral activity and inhibits the replication of several RNA viruses. Here, we determined the role of membranes for the antiviral function of MxA using LaCrosse-bunyavirus (LACV). We show that MxA does not affect trafficking and sorting of viral glycoproteins but binds and mislocates the viral nucleocapsid (N) protein into membrane-associated, large perinuclear complexes. We further demonstrate that MxA localizes to a subcompartment of the smooth endoplasmic reticulum where the viral N protein accumulates. In infected MxA-expressing cells, oligomeric MxA/N complexes are formed in close association with COP-I-positive vesicular-tubular membranes. Our results suggest that this membrane compartment is the preferred place where MxA and N interact, leading to efficient sequestration and missorting of an essential viral component.  相似文献   

2.
3.
Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Nairovirus within the family Bunyaviridae and is the causative agent of severe hemorrhagic fever. Despite increasing knowledge about hemorrhagic fever viruses, the factors determining their pathogenicity are still poorly understood. The interferon-induced MxA protein has been shown to have an inhibitory effect on several members of the Bunyaviridae family, but the effect of MxA against CCHFV has not previously been studied. Here, we report that human MxA has antiviral activity against CCHFV. The yield of progeny virus in cells constitutively expressing MxA was reduced up to 1,000-fold compared with control cells, and accumulation of viral genomes was blocked. Confocal microscopy revealed that MxA colocalizes with the nucleocapsid protein (NP) of CCHFV in the perinuclear regions of infected cells. Furthermore, we found that MxA interacted with NP by using a coimmunoprecipitation assay. We also found that an amino acid substitution (E645R) within the C-terminal domain of MxA resulted in a loss of MxA antiviral activity and, concomitantly, in the capacity to interact with CCHFV NP. These results suggest that MxA, by interacting with a component of the nucleocapsid, prevents replication of CCHFV viral RNA and thereby inhibits the production of new infectious virus particles.  相似文献   

4.
5.
Helt AM  Harris E 《Journal of virology》2005,79(21):13218-13230
Dengue virus (DEN) is the most prevalent cause of arthropod-borne viral illness in humans. We determined the influence of cellular growth state on DEN type 2 (DEN2) replication in mosquito and human cells, based on the hypothesis that manipulation of cellular growth state will facilitate identification of viral and cellular determinants of productive infection. Comparison of density-arrested and cycling C6/36 Aedes albopictus cells infected with a low-passage DEN2 isolate revealed that cycling cells generated higher virus titers per cell. When C6/36 cells were stalled in S-phase via a thymidine (THY) block, titers of low-passage DEN2 isolates and a high-passage strain, 16681, were increased approximately 30-fold and 10-fold, respectively. Moreover, virus release was earlier in THY-treated cells than in asynchronously cycling cells. Adsorption, entry, genome uncoating, and translation were not responsible for increased titers of virus from S-phase C6/36 cells. In contrast to the 30-fold increase in virus titers, intracellular levels of viral RNA were increased approximately 2-fold, suggesting that the S-phase-responsive step is late in the DEN2 replication cycle. Analysis of viral RNA and protein released from the cells indicated that enhanced DEN2 assembly is largely responsible for increased virus titers produced during S-phase. In contrast to C6/36 cells, DEN2 titers from S-phase human hepatoma cells or primary human fibroblasts were not increased. These results demonstrate a differential response of DEN2 to the mosquito and human cell cycle and provide a framework for detailed studies into the mechanisms mediating virus assembly.  相似文献   

6.
The objective of this study was to investigate the use of chloroquine (CLQ) as an antiviral agent against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of U937 cells infected with dengue virus type 2 (DENV‐2). Viral replication was assessed by quantification of virus produced through detection of copy numbers of DENV‐2 RNA, plaque assay and indirect immunofluorescence. qRT‐PCR and plaque assays were used to quantify the DENV‐2 load in infected U937 cells after CLQ treatment. It was found that a dose of 50 μg/mL of CLQ was not toxic to the cells and resulted in significantly less virus production in infected U937 cells than occurred in untreated cells. In the present work, CLQ was effective against DENV‐2 replication in U937 cells, and also caused a statistically significant reduction in expression of proinflammatory cytokines. The present study indicates that CLQ may be used to reduce viral yield in U937 cells.  相似文献   

7.
8.
MxA is an interferon-induced antiviral protein. Viral replication relies on the trafficking machinery of the host cell. Overexpression of MxA was found to perturb trafficking of internalized transferrin resulting in its accumulation in cells. Interestingly, this perturbation of endocytic trafficking was transient--with a maximal effect being seen 5-6 h after transfection. By 12 h after transfection the perturbation of endocytosis was seen to have subsided although MxA protein levels remained elevated even 24 h after transfection. The accumulation of transferrin is due to a block in transferrin recycling. It is further shown that MxA can physically associate with the endocytic protein dynamin, possibly accounting for the observed effect of MxA expression on transferrin endocytosis. These results uncover a hitherto unknown aspect of MxA action on trafficking processes within cells.  相似文献   

9.
MxA is a GTPase that accumulates to high levels in the cytoplasm of interferon-treated human cells. Expression of MxA cDNA confers to transfected cell lines a high degree of resistance against several RNA viruses, including influenza, measles, vesicular stomatitis, and Thogoto viruses. We have now generated transgenic mice that express MxA cDNA in the brain and other organs under the control of a constitutive promoter. Embryonic fibroblasts derived from the transgenic mice were nonpermissive for Thogoto virus and showed reduced susceptibility for influenza A and vesicular stomatitis viruses. The transgenic animals survived challenges with high doses of Thogoto virus by the intracerebral or intraperitoneal route. Furthermore, the transgenic mice were more resistant than their nontransgenic littermates to intracerebral infections with influenza A and vesicular stomatitis viruses. These results demonstrate that MxA is a powerful antiviral agent in vivo, indicating that it may protect humans from the deleterious effects of infections with certain viral pathogens.  相似文献   

10.
11.
Interferon-inducible MxA protein plays a crucial role in cellular protection from RNA virus infection, although the protection mechanism is not completely clarified. Here, we examined effects of MxA on either uninfected or influenza virus A/PR/8/34-infected cells. Viral protein synthesis was reduced in cells expressing MxA. Under serum-starved conditions, not only viral but also cellular protein synthesis was reduced by expression of MxA. Of interest is that MxA promoted cell death induced by apoptotic stimuli as well as influenza virus infection. These results lead to a possibility that MxA suppresses multiplication of influenza virus by affecting cellular functions including the apoptotic pathway.  相似文献   

12.
MxA and MxB are interferon-induced proteins of human cells and are related to the murine protein Mx1, which confers selective resistance to influenza virus. In contrast to the nuclear murine protein Mx1, MxA and MxB are located in the cytoplasm, and their role in the interferon-induced antiviral state was unknown. In this report we show that transfected cell lines expressing MxA acquired a high degree of resistance to influenza A virus. Surprisingly, MxA also conferred resistance to vesicular stomatitis virus. Expression of MxA in transfected 3T3 cells had no effect on the multiplication of two picornaviruses, a togavirus, or herpes simplex virus type 1. Treatment of MxA-expressing cells with antibodies to mouse alpha-beta interferon did not abolish the resistance phenotype. The conclusion that resistance to influenza virus and vesicular stomatitis virus was due to the specific action of MxA is further supported by the observation that transfected 3T3 cell lines expressing the related MxB failed to acquire virus resistance.  相似文献   

13.
DNA replication of phage-plasmid P4 in its host Escherichia coli depends on its replication protein α. In the plasmid state, P4 copy number is controlled by the regulator protein Cnr (copy number regulation). Mutations in α (αcr) that prevent regulation by Cnr cause P4 over-replication and cell death. Using the two-hybrid system in Saccharomyces cerevisiae and a system based on λ immunity in E.coli for in vivo detection of protein–protein interactions, we found that: (i) α protein interacts with Cnr, whereas αcr proteins do not; (ii) both α–α and αcr–αcr interactions occur and the interaction domain is located within the C-terminal of α; (iii) Cnr–Cnr interaction also occurs. Using an in vivo competition assay, we found that Cnr interferes with both α–α and αcr–αcr dimerization. Our data suggest that Cnr and α interact in at least two ways, which may have different functional roles in P4 replication control.  相似文献   

14.

Background  

The early events underlying Alzheimer's disease (AD) remain uncertain, although environmental factors may be involved. Work in this laboratory has shown that the combination of herpes simplex virus type 1 (HSV1) in brain and carriage of the APOE-ε4 allele of the APOE gene strongly increases the risk of developing AD. The development of AD is thought to involve abnormal aggregation or deposition of a 39–43 amino acid protein - β amyloid (Aβ) - within the brain. This is cleaved from the much larger transmembranal protein 'amyloid precursor protein' (APP). Any agent able to interfere directly with Aβ or APP metabolism may therefore have the capacity to contribute towards AD. One recent report showed that certain HSV1 glycoprotein peptides may aggregate like Aβ; a second study described a role for APP in transport of virus in squid axons. However to date the effects of acute herpesvirus infection on metabolism of APP in human neuronal-type cells have not been investigated. In order to find if HSV1 directly affects APP and its degradation, we have examined this protein from human neuroblastoma cells (normal and transfected with APP 695) infected with the virus, using Western blotting.  相似文献   

15.
Eastern equine encephalitis virus (EEEV) is a human and veterinary pathogen that causes sporadic cases of fatal neurological disease. We previously demonstrated that the capsid protein of EEEV is a potent inhibitor of host cell gene expression and that this function maps to the amino terminus of the protein. We now identify amino acids 55 to 75, within the N terminus of the capsid, as critical for the inhibition of host cell gene expression. An analysis of stable EEEV replicons expressing mutant capsid proteins corroborated these mapping data. When deletions of 5 to 20 amino acids within this region of the capsid were introduced into infectious EEEV, the mutants exhibited delayed replication in Vero cells. However, the replication of the 5-amino-acid deletion mutant in C710 mosquito cells was not affected, suggesting that virus replication and assembly were affected in a cell-specific manner. Both 5- and 20-amino-acid deletion mutant viruses exhibited increased sensitivity to interferon (IFN) in cell culture and impaired replication and complete attenuation in mice. In summary, we have identified a region within the capsid protein of EEEV that contributes to the inhibition of host gene expression and to the protection of EEEV from the antiviral effects of IFNs. This region is also critical for EEEV pathogenesis.  相似文献   

16.
The SIVmac239 infectious clone does not have a premature stop codon in its transmembrane protein (TMP) region and it produces full-length (41 kilodalton, kDa) TMP in macaque peripheral blood lymphocytes (PBL) in vitro and in vivo. However, viruses with truncated forms of TMP (28kDa) are selected during propagation in human cell types; truncated forms arise from point mutations, CAG (glutamine) to TAG (stop), in the viral genome. These results document molecular changes associated with adaptation of SIVmac for growth in human cells.  相似文献   

17.
Garbitt RA  Bone KR  Parent LJ 《Journal of virology》2004,78(24):13534-13542
The Rous sarcoma virus Gag protein undergoes transient nuclear trafficking during virus assembly. Nuclear import is mediated by a nuclear targeting sequence within the MA domain. To gain insight into the role of nuclear transport in replication, we investigated whether addition of a "classical " nuclear localization signal (NLS) in Gag would affect virus assembly or infectivity. A bipartite NLS derived from nucleoplasmin was inserted into a region of the MA domain of Gag that is dispensable for budding and infectivity. Gag proteins bearing the nucleoplasmin NLS insertion displayed an assembly defect. Mutant virus particles (RC.V8.NLS) were not infectious, although they were indistinguishable from wild-type virions in Gag, Gag-Pol, Env, and genomic RNA incorporation and Gag protein processing. Unexpectedly, postinfection viral DNA synthesis was also normal, as similar amounts of two-long-terminal-repeat junction molecules were detected for RC.V8.NLS and wild type, suggesting that the replication block occurred after nuclear entry of proviral DNA. Phenotypically revertant viruses arose after continued passage in culture, and sequence analysis revealed that the nucleoplasmin NLS coding sequence was deleted from the gag gene. To determine whether the nuclear targeting activity of the nucleoplasmin sequence was responsible for the infectivity defect, two critical basic amino acids in the NLS were altered. This virus (RC.V8.KR/AA) had restored infectivity, and the MA.KR/AA protein showed reduced nuclear localization, comparable to the wild-type MA protein. These data demonstrate that addition of a second NLS, which might direct MA and/or Gag into the nucleus by an alternate import pathway, is not compatible with productive virus infection.  相似文献   

18.
Arthropod-borne viruses infect both mosquito and mammalian hosts. While much is known about virus-host interactions that modulate viral gene expression in their mammalian host, much less is known about the interactions that involve inhibition, subversion or avoidance strategies in the mosquito host. A novel RNA-Protein interaction detection assay was used to detect proteins that directly or indirectly bind to dengue viral genomes in infected mosquito cells. Membrane-associated mosquito proteins Sec61A1 and Loquacious (Loqs) were found to be in complex with the viral RNA. Depletion analysis demonstrated that both Sec61A1 and Loqs have pro-viral functions in the dengue viral infectious cycle. Co-localization and pull-down assays showed that Loqs interacts with viral protein NS3 and both full-length and subgenomic viral RNAs. While Loqs coats the entire positive-stranded viral RNA, it binds selectively to the 3’ end of the negative-strand of the viral genome. In-depth analyses showed that the absence of Loqs did not affect translation or turnover of the viral RNA but modulated viral replication. Loqs also displayed pro-viral functions for several flaviviruses in infected mosquito cells, suggesting a conserved role for Loqs in flavivirus-infected mosquito cells.  相似文献   

19.
Thogoto and Dhori viruses are tick-borne orthomyxoviruses infecting humans and livestock in Africa, Asia, and Europe. Here, we show that human MxA protein is an efficient inhibitor of Thogoto virus but is inactive against Dhori virus. When expressed in the cytoplasm of stably transfected cell lines, MxA protein interfered with the accumulation of Thogoto viral RNA and proteins. Likewise, MxA(R645), a mutant MxA protein known to be active against influenza virus but inactive against vesicular stomatitis virus, was equally efficient in blocking Thogoto virus growth. Hence, a common antiviral mechanism that is distinct from the antiviral action against vesicular stomatitis virus may operate against both influenza virus and Thogoto virus. When moved to the nucleus with the help of a foreign nuclear transport signal, MxA(R645) remained active against Thogoto virus, indicating that a nuclear step of virus replication was inhibited. In contrast, Dhori virus was not affected by wild-type or mutant MxA protein, indicating substantial differences between these two tick-transmitted orthomyxoviruses. Human MxB protein had no antiviral activity against either virus.  相似文献   

20.
Transient lymphopenia is a hallmark of measles virus (MV)-induced immunosuppression. To address to what extent replenishment of the peripheral lymphocyte compartment from bone marrow (BM) progenitor/stem cells might be affected, we analyzed the interaction of wild-type MV with hematopoietic stem and progenitor cells (HS/PCs) and stroma cells in vitro. Infection of human CD34(+) HS/PCs or stroma cells with wild-type MV is highly inefficient yet noncytolytic. It occurs independently of CD150 in stroma cells but also in HS/PCs, where infection is established in CD34(+) CD150(-) and CD34(+) CD150(+) (in humans representing HS/PC oligopotent precursors) subsets. Stroma cells and HS/PCs can mutually transmit MV and may thereby create a possible niche for continuous viral exchange in the BM. Infected lymphocytes homing to this compartment may serve as sources for HS/PC or stroma cell infection, as reflected by highly efficient transmission of MV from both populations in cocultures with MV-infected B or T cells. Though MV exposure does not detectably affect the viability, expansion, and colony-forming activity of either CD150(+) or CD150(-) HS/PCs in vitro, it efficiently interferes with short- but not long-term hematopoietic reconstitution in NOD/SCID mice. Altogether, these findings support the hypothesis that MV accession of the BM compartment by infected lymphocytes may contribute to peripheral blood mononuclear cell lymphopenia at the level of BM suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号