共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorylation of nitric oxide synthase by protein kinase A. 总被引:3,自引:0,他引:3
Nitric oxide synthase was purified to apparent homogeneity from the cytosolic fractions obtained from rat and porcine cerebellum. Enzyme activity--measured as [3H]citrulline formation after incubation with [3H]arginine--was dependent on Ca2+/calmodulin, NADPH, and tetrahydro-L-biopterin. Specific activity varied between 450 to 780 nmol/min/mg protein. Purified nitric oxide synthases showed a single band on 8% SDS/PAGE gels and had an apparent molecular mass of 150,000 Da. The purified proteins were used as substrate for phosphorylation with different protein kinases. In the assays using two Ca2+/calmodulin-dependent protein kinases, CaM kinase II and CaM kinase-Gr, protein kinase C, and the catalytic subunit of protein kinase A, nitric oxide synthase was exclusively phosphorylated by protein kinase A. Such phosphorylation was linear over time for at least 60 min and resulted in nearly stoichiometric phosphate/protein incorporation. The serine in the protein kinase A-consensus sequence KRFGS is probably the site of phosphorylation in nitric oxide synthase. Kemptide, a known protein kinase A substrate, inhibited phosphorylation of nitric oxide synthase in a dose-dependent manner. No changes in nitric oxide synthase activity were observed upon phosphorylation by protein kinase A. 相似文献
2.
Phosphorylation of chicken cardiac C-protein by calcium/calmodulin-dependent protein kinase II. 总被引:5,自引:0,他引:5
Chicken cardiac C-protein was readily phosphorylated by purified calcium/calmodulin-dependent protein kinase II (CaM-kinase II). Maximum incorporation was about 4 mol of 32P/mol of C-protein subunit. Peptide mapping indicated that some of the sites phosphorylated by CaM-kinase II were located on the same phosphopeptides obtained when C-protein was phosphorylated by the cAMP-dependent protein kinase (peptides T1, T2, and T3). There was a fourth peptide (T3a) which was unique to CaM-kinase II phosphorylation. 32P-Amino acid analysis showed that essentially all of the 32P of peptides T1, T2, and T3a was in phosphoserine. cAMP-dependent protein kinase incorporated 32P only into threonine of peptide T3. Threonine was the preferred site of phosphorylation by CaM-kinase II, but there was significant phosphorylation of a serine in peptide T3. Partially purified C-protein preparations contained an associated calcium/calmodulin-dependent protein kinase. Peptide maps obtained from C-protein phosphorylated by the endogenous kinase were similar to those obtained from C-protein phosphorylated by CaM-kinase II. However, the ratio of phosphothreonine to phosphoserine in peptide T3 was lower. This was due to a contaminating phosphatase in the partially purified C-protein which preferentially dephosphorylated the phosphothreonine of peptide T3. It is suggested that the calcium/calmodulin-dependent protein kinase associated with C-protein is similar or identical to CaM-kinase II and that CaM-kinase II may play a role in the phosphorylation of C-protein in the heart. 相似文献
3.
H Y Tung 《Biochemical and biophysical research communications》1986,138(2):783-788
The calmodulin-dependent protein phosphatase was shown to be phosphorylated by the Ca2+, phospholipid-dependent protein kinase (protein kinase C). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the 61 kDa catalytic subunit was phosphorylated. Phosphorylation by protein kinase C was stimulated up to 15-fold by addition of phosphatidyl-L-serine and between 0.5 to 1.0 mole of phosphate was incorporated per mole of phosphatase. It is possible that protein kinase C is involved in the regulation of the calmodulin-dependent protein phosphatase via this novel phosphorylation of the enzyme. 相似文献
4.
Endothelial nitric oxide synthase (eNOS) is a key enzyme in nitric oxide-mediated signal transduction in mammalian cells. Its catalytic activity is regulated both by regulatory proteins, such as calmodulin and caveolin, and by a variety of post-translational modifications including phosphorylation and acylation. We have previously shown that the calmodulin-binding domain peptide is a good substrate for protein kinase C [Matsubara, M., Titani, K., and Taniguchi, H. (1996) Biochemistry 35, 14651-14658]. Here we report that bovine eNOS protein is phosphorylated at Thr497 in the calmodulin-binding domain by PKC both in vitro and in vivo, and that the phosphorylation negatively regulates eNOS activity. A specific antibody that recognizes only the phosphorylated form of the enzyme was raised against a synthetic phosphopeptide corresponding to the phosphorylated domain. The antibody recognized eNOS immunoprecipitated with anti-eNOS antibody from the soluble fraction of bovine aortic endothelial cells, and the immunoreactivity increased markedly when the cells were treated with phorbol 12-myristate 13-acetate. PKC phosphorylated eNOS specifically at Thr497 with a concomitant decrease in the NOS activity. Furthermore, the phosphorylated eNOS showed reduced affinity to calmodulin. Therefore, PKC regulates eNOS activity by changing the binding of calmodulin, an eNOS activator, to the enzyme. 相似文献
5.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII. 相似文献
6.
T Yano T Tokui Y Nishi K Nishizawa M Shibata K Kikuchi S Tsuiki T Yamauchi M Inagaki 《European journal of biochemistry》1991,197(2):281-290
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments. 相似文献
7.
Phosphorylation of neurofilament proteins by endogenous calcium/calmodulin-dependent protein kinase 总被引:8,自引:0,他引:8
M L Vallano T M Buckholz R J DeLorenzo 《Biochemical and biophysical research communications》1985,130(3):957-963
A protein fraction containing neurofilaments was prepared from rat brain cytosol by differential centrifugation and gel filtration chromatography. These preparations were enriched for a calcium/calmodulin-dependent kinase activity that phosphorylated endogenous neurofilament proteins. The enzyme incorporated approximately 1 mol PO4/mol of each neurofilament triplet polypeptide. These data suggest that a calmodulin-dependent kinase may mediate some of the effects of calcium on cytoskeletal function by phosphorylation of neurofilament proteins. 相似文献
8.
Self-regulation of calmodulin-dependent protein kinase II and glycogen synthase kinase by autophosphorylation 总被引:7,自引:0,他引:7
Calmodulin-dependent protein kinase II from rat brain underwent autophosphorylation and the autophosphorylation caused a marked decrease in the enzyme activity. Calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle was also inactivated by incubation under autophosphorylating conditions. The inactivation of the protein kinases by the autophosphorylation may be an important self-regulatory mechanism in controlling the enzyme activities. 相似文献
9.
P1, a high mobility group-like nuclear protein, phosphorylated by casein kinase II on multiple sites in situ, has been found to be phosphorylated in vitro by protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II on multiple and mostly distinct thermolytic peptides. All these enzymes phosphorylated predominantly serine residues, with casein kinase II and protein kinase C also labeling threonine residues. Both casein kinase II and second messenger-regulated protein kinases, particularly protein kinase C, might therefore be involved in the physiological regulation of multisite phosphorylation of P1. 相似文献
10.
Lengyel I Fieuw-Makaroff S Hall AL Sim AT Rostas JA Dunkley PR 《Journal of neurochemistry》2000,75(2):594-605
Calcium/calmodulin-dependent protein kinase II (CaMPK-II) is a key regulatory enzyme in living cells. Modulation of its activity, therefore, could have a major impact on many cellular processes. We found that Zn(2+) has multiple functional effects on CaMPK-II. Zn(2+) generated a Ca(2+)/CaM-independent activity that correlated with the autophosphorylation of Thr(286), inhibited Ca(2+)/CaM binding that correlated with the autophosphorylation of Thr(306), and inhibited CaMPK-II activity at high concentrations that correlated with the autophosphorylation of Ser(279). The relative level of autophosphorylation of these three sites was dependent on the concentration of zinc used. The autophosphorylation of at least these three sites, together with Zn(2+) binding, generated an increased mobility form of CaMPK-II on sodium dodecyl sulfate gels. Overall, autophosphorylation induced by Zn(2+) converts CaMPK-II into a different form than the binding of Ca(2+)/CaM. In certain nerve terminals, where Zn(2+) has been shown to play a neuromodulatory role and is present in high concentrations, Zn(2+) may turn CaMPK-II into a form that would be unable to respond to calcium signals. 相似文献
11.
Agostino PV Ferreyra GA Murad AD Watanabe Y Golombek DA 《Neurochemistry international》2004,44(8):617-625
Mammalian circadian rhythms are entrained by light pulses that induce phosphorylation events in the suprachiasmatic nuclei (SCN). Ca2+-dependent enzymes are known to be involved in circadian phase shifting. In this paper, we show that calcium/calmodulin-dependent kinase II (CaMKII) is rhythmically phosphorylated in the SCN both under entrained and free-running (constant dark) conditions while neuronal nitric oxide synthase (nNOS) is rhythmically phosphorylated in the SCN only under entrained conditions. Both p-CaMKII and p-NOS (specifically phosphorylated by CaMKII) levels peak during the day or subjective day. Light pulses administered during the subjective night, but not during the day, induced rapid phosphorylation of both enzymes. Moreover, we found an inhibitory effect of KN-62 and KN-93, both CaMKII inhibitors, on light-induced nNOS activity and nNOS phosphorylation respectively, suggesting a direct pathway between both enzymes which is at least partially responsible of photic circadian entrainment. 相似文献
12.
Phosphorylation of tubulin by a calmodulin-dependent protein kinase 总被引:16,自引:0,他引:16
F Wandosell L Serrano M A Hernández J Avila 《The Journal of biological chemistry》1986,261(22):10332-10339
Calmodulin-dependent protein kinase was purified from porcine brain cytosol through sequential steps involving acid precipitation, DEAE-chromatography, and calmodulin-Sepharose chromatography. The purified enzyme contained a major Mr 50,000 and a minor Mr 60,000 peptide. Porcine brain tubulin was a major substrate for this kinase. Under optimal conditions 2.6 mol of phosphate were incorporated per mol of tubulin. The kinase phosphorylated both tubulin subunits at their carboxyl-terminal region. Limited proteolysis, using trypsin and chymotrypsin, of phosphorylated and unphosphorylated tubulins resulted in different cleavage patterns as determined by peptide mapping. Phosphorylated tubulin was unable to bind to microtubule-associated protein or to polymerize, but regained its assembly capacity after phosphatase treatment. 相似文献
13.
Nitric oxide (NO) is an important molecular messenger accounting for endothelial-derived relaxing activity in blood vessels, mediating cytotoxic actions of macrophages, and functioning as a neurotransmitter in the brain and periphery. NO synthase (NOS) from brain has been purified to homogeneity and molecularly cloned. We now report that NOS is stoichiometrically phosphorylated by cAMP dependent protein kinase, protein kinase C, and calcium/calmodulin-dependent protein kinase, with each kinase phosphorylating a different serine site on NOS. Activation of PKC in transfected cells reduces NOS enzyme activity by approximately 77% in intact cells and by 50% in protein homogenates from these cells. Utilizing fluorescence spectroscopy we find that purified monomer NOS contains 1 molar equivalent of both FMN and FAD. This stoichiometry is supported by enzymatic digestion of the flavins with phosphodiesterase, and titration of the FMN with a specific FMN binding protein. We demonstrate that purified NOS is labeled by a photoaffinity derivative of calmodulin. These recognition sites on NOS provide multiple means for regulation of NO levels and "cross-talk" between second messenger systems. 相似文献
14.
M G Tansey R A Word H Hidaka H A Singer C M Schworer K E Kamm J T Stull 《The Journal of biological chemistry》1992,267(18):12511-12516
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle. 相似文献
15.
Smooth muscle caldesmon was phosphorylated by smooth muscle calmodulin-dependent protein kinase II. The extent of phosphorylation obtained was 5.65 mol of phosphate/mol of caldesmon. Phosphorylated protein was subjected to the complete trypsin proteolysis and the produced phosphopeptides were purified by C-8 reverse phase chromatography. Nine phosphopeptides were isolated and by amino acid sequence analysis, eight phosphorylation sites were identified. According to the published amino acid sequence of chicken gizzard caldesmon (Bryan, J., Imai, M., Lee, R., Moore, P., Cook, R. G., and Lin, W.-G. (1989) J. Biol. Chem. 264, 13873-13879), these sites were serine 26, serine 59, serine 73, threonine 469, serine 475, serine 587, serine 620, and serine 726. The time course of phosphorylation of these sites was also measured and it was concluded that the first site was serine 73, the second site was serine 26, the third site was serine 726, and the fourth site was serine 587. The preferred phosphorylation sites were located in the amino terminus myosin binding domain whereas slower phosphorylation occurred in the carboxyl terminus actin/calmodulin domain. 相似文献
16.
J C Sáez A C Nairn A J Czernik D C Spray E L Hertzberg P Greengard M V Bennett 《European journal of biochemistry》1990,192(2):263-273
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins. 相似文献
17.
Phosphorylation and functional modification of calmodulin-dependent protein kinase IV by cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
Calmodulin-dependent protein kinase IV (CaM-kinase IV), a neuronal calmodulin-dependent multifunctional protein kinase, undergoes autophosphorylation in response to Ca2+ and calmodulin, resulting in activation of the enzyme (Frangakis et al. (1991) J. Biol. Chem. 266, 11309-11316). In contrast, the enzyme was phosphorylated by cAMP-dependent protein kinase, leading to a decrease in the enzyme activity. Thus, the results suggest differential regulation of CaM-kinase IV by two representative second messengers, Ca2+ and cAMP. 相似文献
18.
Rat brain type II (beta) protein kinase C (PKC) was phosphorylated by rat lung casein kinase II (CK-II). Neither type I (gamma) nor type III (alpha) PKC was significantly phosphorylated by CK-II. CK-II incorporated 0.2-0.3 mol of phosphate into 1 mol of type II PKC. This phosphate was located at the single seryl residue (Ser-11) in the V1-variable region of the regulatory domain of the PKC molecule. A glutamic acid cluster was located at the carboxyl-terminal side of Ser-11, showing the consensus sequence for phosphorylation by CK-II. The velocity of this phosphorylation was enhanced by the addition of Ca2+, diolein, and phosphatidylserine, which are all required for the activation of PKC. Phosphorylation of casein or synthetic oligopeptides by CK-II was not affected by Ca2+, diolein, or phosphatidylserine. Available evidence suggests that CK-II phosphorylates preferentially the activated form of type II PKC. It remains unknown, however, whether this reaction has a physiological significance. 相似文献
19.
Further comparison of calmodulin-dependent protein kinase II from brain and calmodulin-dependent glycogen synthase kinase from skeletal muscle 总被引:1,自引:0,他引:1
Calmodulin-dependent protein kinase II was purified from rabbit brain and its properties were compared with those of calmodulin-dependent protein kinase II from rat brain and calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle. Rabbit brain calmodulin-dependent protein kinase II was clearly distinguished from rabbit skeletal muscle glycogen synthase kinase with respect to size, behavior on autophosphorylation, immunological cross-reactivity and peptide mapping, but was indistinguishable from rat brain calmodulin-dependent protein kinase II in all respects examined. Thus, differences between calmodulin-dependent protein kinase II and glycogen synthase kinase appear not to reflect a species difference but to reflect a tissue difference. 相似文献