首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the characterization of H1.X, a human histone H1 subtype. We demonstrate that H1.X accumulates in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. In addition, the results of fluorescence recovery after photobleaching indicate that the exchange of H1.X on and off chromatin is faster than that of the other H1 subtypes. Furthermore, RNA interference experiments reveal that H1.X is required for chromosome alignment and segregation. Our results suggest that H1.X has important functions in mitotic progression, which are different from those of the other H1 subtypes.  相似文献   

2.
Intermediate filaments: a historical perspective   总被引:6,自引:0,他引:6  
Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years.  相似文献   

3.
Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.  相似文献   

4.
Plectin is a cross-linking protein that organizes the cytoskeleton into a stable meshwork that helps maintain the uniform size and shape of cells. As cells of hepatocellular carcinoma are morphologically different from healthy human hepatocytes, we hypothesized that plectin deficiency and cytoskeletal disorganization underlies this pleomorphic transformation. To test this hypothesis we induced apoptosis as the most accessible pathway for creating plectin deficiency status in vivo. We analyzed expression levels and organization of plectin and other cytoskeletal elements, including intermediate filaments, microfilaments, and microtubules, after staurosporine-induced apoptosis in human Chang liver cells. The results revealed the expression of plectin and cytokeratin 18 were downregulated in hepatocellular carcinoma tissues in vivo. The expression of actin and tubulin, however, were not altered. In vitro analysis indicated that plectin and cytokeratin 18 were cleaved following staurosporine-treatment of human Chang liver cells. Time course experiments revealed that plectin was cleaved 2 h earlier than cytokeratin 18. The organization of plectin and cytokeratin 18 networks collapsed after staurosporine-treatment. Conclusively, degradation of plectin induced by staurosporine-treatment in liver cells resulted in cytoskeleton disruption and induced morphological changes in these cells by affecting the expression and organization of cytokeratin 18.  相似文献   

5.
Rapamycin-triggered heterodimerization strategy is becoming an excellent tool for rapidly modifying phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P2] levels at the plasma membrane and for studying their influence in different processes. In this work, we studied the effect of modulation of the PtdIns(4,5)P2 concentration on protein kinase C (PKC) α membrane localization in intact living cells. We showed that an increase in the PtdIns(4,5)P2 concentration enlarges the permanence of PKCα in the plasma membrane when PC12 cells are stimulated with ATP, independently of the diacylglycerol generated. The depletion of this phosphoinositide decreases both the percentage of protein able to translocate to the plasma membrane and its permanence there. Our results demonstrate that the polybasic cluster located in the C2 domain of PKCα is responsible for this phosphoinositide-protein interaction. Furthermore, the C2 domain acts as a dominant interfering module in the neural differentiation process of PC12 cells, a fact that was also supported by the inhibitory effect obtained by knocking down PKCα with small interfering RNA duplexes. Taken together, these data demonstrate that PtdIns(4,5)P2 itself targets PKCα to the plasma membrane through the polybasic cluster located in the C2 domain, with this interaction being critical in the signaling network involved in neural differentiation.  相似文献   

6.
To maintain the normal length of female reproductive life, the majority of primordial follicles must be maintained in a quiescent state for later use. In this study, we aimed to study the effects of rapamycin on primordial follicle development and investigate the role of mTOR and sirtuin signaling. Rats were treated every other day with an intraperitoneal injection of rapamycin (5 mg/kg) or vehicle. After 10 weeks of treatment, ovaries were harvested for hematoxylin and eosin (HE) staining, and analysis by immunohistochemistry and Western blotting. HE staining showed that the number and percentage of primordial follicles in the rapamycin-treated group were twice the control group (P < 0.001). Immunohistochemical analysis showed that mTOR and phosphorylated-p70S6K were extensively expressed in surviving follicles with strong staining observed in the cytoplasm of the oocyte. Western blotting showed decreased expression of phosphorylated mTOR and phosphorylated p70S6K in the rapamycin-treated group, and increased the expression of both SIRT1 and SIRT6 compared to the control group (P < 0.05). Taken together, these results suggest that rapamycin may inhibit the transition from primordial to developing follicles and preserve the follicle pool reserve, thus extending the ovarian lifespan of female rats via the modulation of mTOR and sirtuin signalings.  相似文献   

7.
We have studied JMJD2b histone demethylase, which antagonizes H3K9me3 in the pericentromeric heterochromatin. In cells with a deficiency in the histone methyltransferase SUV39h, the level of full-length JMJD2b (JMJD2b-GFP-1086) at chromocenters was reduced, corresponding to a global decrease in JMJD2b and H3K9me3. In wild-type fibroblasts, the chromatin of ribosomal genes, which is dense with H3K9 methylation, lacked JMJD2b-GFP-1086, while mutant and truncated forms of JMJD2b densely occupied the nucleolar compartment. This implies that the PHD Zn-fingers and Tudor domains, which were removed in truncated JMJD2b, are responsible for the aberrant JMJD2b function. Intriguingly, the JMJD2b-GFP-1086 level was significantly higher in tumor cell nucleoli. The kinetic properties of JMJD2b-GFP-1086 in the nucleoli and nucleoplasm of normal and tumor cells were similar; ∼ 50% recovery of prebleached intensity was reached after < 1 s. However, the mobile fraction of JMJD2b-GFP-1086 was increased in SUV39h-deficient cells. Similarly, the mobile fractions of mutant JMJD2b(1-424)H189A-GFP and truncated JMJD2b(1-424)GFP were greater than that measured for the full-length protein. We suggest that nucleoli are the site of an aberrant function of JMJD2b, the kinetic properties of which can be influenced by a mutant genetic background.  相似文献   

8.
Thirty years ago, it was discovered that 14-3-3 proteins could activate enzymes involved in amino acid metabolism. In the following decades, 14-3-3s have been shown to be involved in many different signaling pathways that modulate cellular and whole body energy and nutrient homeostasis. Large scale screening for cellular binding partners of 14-3-3 has identified numerous proteins that participate in regulation of metabolic pathways, although only a minority of these targets have yet been subject to detailed studies. Because of the wide distribution of potential 14-3-3 targets and the resurging interest in metabolic pathway control in diseases like cancer, diabetes, obesity and cardiovascular disease, we review the role of 14-3-3 proteins in the regulation of core and specialized cellular metabolic functions. We cite illustrative examples of 14-3-3 action through their direct modulation of individual enzymes and through regulation of master switches in cellular pathways, such as insulin signaling, mTOR- and AMP dependent kinase signaling pathways, as well as regulation of autophagy. We further illustrate the quantitative impact of 14-3-3 association on signal response at the target protein level and we discuss implications of recent findings showing 14-3-3 protein membrane binding of target proteins.  相似文献   

9.
Normal thyrocytes grown as reconstituted follicles in collagen gel were evaluated for drug effects of small molecule kinase inhibitors on growth factor-induced cell migration in a 3D context. MEK inhibition by U0126 only partially antagonized EGF/serum-induced cell migration from the basal follicular surface into the matrix. Combined treatment with U0126 and LY294002, a PI3K blocker, was necessary to abolish migration. However, exposure to only LY294002 facilitated the response to EGF by breakdown of the original follicular structure. In the same time EGF promoted thyroid cell survival that was compromised by LY294002 in absence of EGF. Cells treated with EGF and LY294002 retained the ability to form follicles. The findings indicate that dual inhibition of MAPK and PI3K/AKT pathways is required to fully block matrix invasion of EGF-stimulated thyroid cells. Conversely, single drug treatment with PI3K inhibitor adversely promotes invasiveness probably by destabilizing the follicular epithelium.  相似文献   

10.
Vimentin is the major intermediate filament (IF) protein of mesenchymal cells. It shows dynamically altered expression patterns during different developmental stages and high sequence homology throughout all vertebrates, suggesting that the protein is physiologically important. Still, until recently, the real tasks of vimentin have been elusive, primarily because the vimentin-deficient mice were originally characterized as having a very mild phenotype. Recent studies have revealed several key functions for vimentin that were not obvious at first sight. Vimentin emerges as an organizer of a number of critical proteins involved in attachment, migration, and cell signaling. The highly dynamic and complex phosphorylation of vimentin seems to be a likely regulator mechanism for these functions. The implicated novel vimentin functions have broad ramifications into many different aspects of cell physiology, cellular interactions, and organ homeostasis.  相似文献   

11.
Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.  相似文献   

12.
Activation of the nuclear factor (NF)-κB signaling pathway may be associated with the development of cardiac hypertrophy and its transition to heart failure (HF). The transgenic Myo-Tg mouse develops hypertrophy and HF as a result of overexpression of myotrophin in the heart associated with an elevated level of NF-κB activity. Using this mouse model and an NF-κB-targeted gene array, we first determined the components of NF-κB signaling cascade and the NF-κB-linked genes that are expressed during the progression to cardiac hypertrophy and HF. Second, we explored the effects of inhibition of NF-κB signaling events by using a gene knockdown approach: RNA interference through delivery of a short hairpin RNA against NF-κB p65 using a lentiviral vector (L-sh-p65). When the short hairpin RNA was delivered directly into the hearts of 10-week-old Myo-Tg mice, there was a significant regression of cardiac hypertrophy, associated with a significant reduction in NF-κB activation and atrial natriuretic factor expression. Our data suggest, for the first time, that inhibition of NF-κB using direct gene delivery of sh-p65 RNA results in regression of cardiac hypertrophy. These data validate NF-κB as a therapeutic target to prevent hypertrophy/HF.  相似文献   

13.
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.  相似文献   

14.
15.
Helene Knævelsrud 《FEBS letters》2010,584(12):2635-31696
Ubiquitinated protein aggregates are hallmarks of a range of human diseases, including neurodegenerative, liver and muscle disorders. These protein aggregates are typically positive for the autophagy receptor p62. Whereas the ubiquitin-proteasome system (UPS) degrades shortlived and misfolded ubiquitinated proteins that are small enough to enter the narrow pore of the barrel-shaped proteasome, the lysosomal pathway of autophagy can degrade larger structures including entire organelles or protein aggregates. This degradation requires autophagy receptors that link the cargo with the molecular machinery of autophagy and is enhanced by certain posttranslational modifications of the cargo. In this review we focus on how autophagy clears aggregate-prone proteins and the relevance of this process to protein aggregate associated diseases.  相似文献   

16.
Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury.  相似文献   

17.
Glutathione (GSH) plays a critical role in protecting cells from oxidative stress and xenobiotics, as well as maintaining the thiol redox state, most notably in the central nervous system (CNS). GSH concentration and synthesis are highly regulated within the CNS and are limited by availability of the sulfhydryl amino acid (AA) l-cys, which is mainly transported from the blood, through the blood-brain barrier (BBB), and into neurons. Several antiporter transport systems (e.g., x(c)(-), x(-)(AG), and L) with clearly different luminal and abluminal distribution, Na(+), and pH dependency have been described in brain endothelial cells (BEC) of the BBB, as well as in neurons, astrocytes, microglia and oligodendrocytes from different brain structures. The purpose of this review is to summarize information regarding the different AA transport systems for l-cys and its oxidized form l-cys(2) in the CNS, such as expression and activity in blood-brain barrier endothelial cells, astrocytes and neurons and environmental factors that modulate transport kinetics.  相似文献   

18.
The only known structural protein required for formation of myelin, produced by oligodendrocytes in the central nervous system, is myelin basic protein (MBP). This peripheral membrane protein has different developmentally-regulated isoforms, generated by alternative splicing. The isoforms are targeted to distinct subcellular locations, which is governed by the presence or absence of exon-II, although their functional expression is often less clear. Here, we investigated the role of exon-II-containing MBP isoforms and their link with cell proliferation. Live-cell imaging and FRAP analysis revealed a dynamic nucleocytoplasmic translocation of the exon-II-containing postnatal 21.5-kDa MBP isoform upon mitogenic modulation. Its nuclear export was blocked upon treatment with leptomycin B, an inhibitor of nuclear protein export. Next to the postnatal MBP isoforms, embryonic exon-II-containing MBP (e-MBP) is expressed in primary (immature) oligodendrocytes. The e-MBP isoform is exclusively present in OLN-93 cells, a rat-derived oligodendrocyte progenitor cell line, and interestingly, also in several non-CNS cell lines. As seen for postnatal MBPs, a similar nucleocytoplasmic translocation upon mitogenic modulation was observed for e-MBP. Thus, upon serum deprivation, e-MBP was excluded from the nucleus, whereas re-addition of serum re-established its nuclear localization, with a concomitant increase in proliferation. Knockdown of MBP by shRNA confirmed a role for e-MBP in OLN-93 proliferation, whereas the absence of e-MBP similarly reduced the proliferative capacity of non-CNS cell lines. Thus, exon-II-containing MBP isoforms may regulate cell proliferation via a mechanism that relies on their dynamic nuclear import and export, which is not restricted to the oligodendrocyte lineage.  相似文献   

19.

Background

A common strategy of microbial pathogens is to invade host cells during infection. The invading microbes explore different intracellular compartments to find their preferred niche.

Scope of Review

Imaging has been instrumental to unravel paradigms of pathogen entry, to identify their exact intracellular location, and to understand the underlying mechanisms for the formation of pathogen-containing niches. Here, we provide an overview of imaging techniques that have been applied to monitor the intracellular lifestyle of pathogens, focusing mainly on bacteria that either remain in vacuolar-bound compartments or rupture the endocytic vacuole to escape into the host's cellular cytoplasm.

Major Conclusions

We will depict common molecular and cellular paradigms that are preferentially exploited by pathogens. A combination of electron microscopy, fluorescence microscopy, and time-lapse microscopy has been the driving force to reveal underlying cell biological processes. Furthermore, the development of highly sensitive and specific fluorescent sensor molecules has allowed for the identification of functional aspects of niche formation by intracellular pathogens.

General Significance

Currently, we are beginning to understand the sophistication of the invasion strategies used by bacterial pathogens during the infection process- innovative imaging has been a key ingredient for this.This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   

20.
Thompson WR  Rubin CT  Rubin J 《Gene》2012,503(2):179-193
A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号