首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Long standing research of the Neural Crest embodies the most fundamental questions of Developmental Biology. Understanding the mechanisms responsible for specification, delamination, migration and phenotypic differentiation of this highly diversifying group of progenitors has been a challenge for many researchers over the years and continues to attract newcomers into the field. Only a few leaps were more significant than the discovery and successful exploitation of the quail-chick model by Nicole Le Douarin and colleagues from the Institute of Embryology at Nogent-sur-Marne. The accurate fate mapping of the neural crest performed at virtually all axial levels was followed by the determination of its developmental potentialities as initially analysed at a population level and then followed by many other significant findings. Altogether, these results paved the way to innumerable questions which brought us from an organismic view to mechanistic approaches. Among them, elucidation of functions played by identified genes is now rapidly underway. Emerging results lead the way back to an integrated understanding of the nature of interactions between the developing neural crest and neighbouring structures. The Nogent Institute thus performed an authentic "tour de force" in bringing the Neural Crest to the forefront of Developmental Biology. The present review is dedicated to the pivotal contributions of Nicole Le Douarin and her collaborators and to unforgettable memories that one of the authors bears from the time spent in the Nogent Institute. We summarize here recent advances in our understanding of early stages of crest ontogeny that comprise specification of epithelial progenitors to a neural crest fate and the onset of neural crest migration. Particular emphasis is given to signaling by BMP and Wnt molecules, to the role of the cell cycle in generating cell movement and to possible interactions between both mechanisms.  相似文献   

2.
The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the formation of the vertebrate head, and are thought to be a key attribute at the center of vertebrate evolution and diversity. Further, aberrant neural crest cell development and differentiation is the root cause of many human pathologies, including cancers, rare syndromes, and birth malformations. In this review, we discuss the current findings of neural crest cell ontogeny, and consider tissue, cell, and molecular contributions toward neural crest formation. We further provide current perspectives into the molecular network involved during the segregation of the neural crest lineage.  相似文献   

3.
The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.  相似文献   

4.
The neural crest has long been regarded as one of the key novelties in vertebrate evolutionary history. Indeed, the vertebrate characteristic of a finely patterned craniofacial structure is intimately related to the neural crest. It has been thought that protochordates lacked neural crest counterparts. However, recent identification and characterization of protochordate genes such as Pax3/7, Dlx and BMP family members challenge this idea, because their expression patterns suggest remarkable similarity between the vertebrate neural crest and the ascidian dorsal midline epidermis, which gives rise to both epidermal cells and sensory neurons. The present paper proposes that the neural crest is not a novel vertebrate cell population, but may have originated from the protochordate dorsal midline epidermis. Therefore, the evolution of the vertebrate neural crest should be reconsidered in terms of new cell properties such as pluripotency, delamination-migration and the carriage of an anteroposterior positional value, key innovations leading to development of the complex craniofacial structure in vertebrates. Molecular evolutionary events involved in the acquisitions of these new cell properties are also discussed. Genome duplications during early vertebrate evolution may have played an important role in allowing delamination of the neural crest cells. The new regulatory mechanism of Hox genes in the neural crest is postulated to have developed through the acquisition of new roles by coactivators involved in retinoic acid signaling.  相似文献   

5.
6.
Neural crest cells are a transient stem-like cell population that forms in the dorsal neural tube of vertebrate embryos and then migrates to various locations to differentiate into diverse derivatives such as craniofacial bone, cartilage, and the enteric and peripheral nervous systems. The current dogma of neural crest cell development suggests that there is a specific hierarchical gene regulatory network (GRN) that controls the induction, specification, and differentiation of these cells at specific developmental times. Our lab has identified that a marker of differentiated neurons, Tubulin Beta-III (TUBB3), is expressed in premigratory neural crest cells. TUBB3 has previously been identified as a major constituent of microtubules and is required for the proper guidance and maintenance of axons during development. Using the model organism, Gallus gallus, we have characterized the spatiotemporal localization of TUBB3 in early stages of development. Here we show TUBB3 is expressed in the developing neural plate, is upregulated in the pre-migratory cranial neural crest prior to cell delamination and migration, and it is maintained or upregulated in neurons in later developmental stages. We believe that TUBB3 likely has a role in early neural crest formation and migration separate from its role in neurogenesis.  相似文献   

7.
The vertebrate neural crest is a population of migratory cells that originates in the dorsal aspect of the embryonic neural tube. These cells undergo an epithelial-to-mesencyhmal transition (EMT), delaminate from the neural tube and migrate extensively to generate an array of differentiated cell types. Elucidating the gene regulatory networks involved in neural crest cell induction, migration and differentiation are thus crucial to understanding vertebrate development. To this end, we have identified Annexin A6 as an important regulator of chick midbrain neural crest cell emigration. Annexin proteins comprise a family of calcium-dependent, membrane-binding molecules that mediate a variety of cellular and physiological processes including cell adhesion, migration and invasion. Our data indicate that Annexin A6 is expressed in the proper spatio-temporal pattern in the chick midbrain to play a potential role in neural crest cell ontogeny. To investigate Annexin A6 function, we have depleted or overexpressed Annexin A6 in the developing midbrain neural crest cell population. Our results show that knock-down or overexpression of Annexin A6 reduces or expands the migratory neural crest cell domain, respectively. Importantly, this phenotype is not due to any change in cell proliferation or cell death but can be correlated with changes in the size of the premigratory neural crest cell population and with markers associated with EMT. Taken together, our data indicate that Annexin A6 plays a pivotal role in modulating the formation of cranial migratory neural crest cells during vertebrate development.  相似文献   

8.
The neural crest is a transient population of migratory cells that differentiates to form a variety of cell types in the vertebrate embryo, including melanocytes, the craniofacial skeleton, and portions of the peripheral nervous system. These cells initially exist as adherent epithelial cells in the dorsal aspect of the neural tube and only later become migratory after an epithelial-to-mesenchymal transition (EMT). Snail2 plays a critical role in mediating chick neural crest cell EMT and migration due to its expression by both premigratory and migratory cranial neural crest cells and its ability to down-regulate intercellular junctions components. In an attempt to delineate the role of cellular junction components in the neural crest, we have identified the adherens junction molecule neural alpha-catenin (αN-catenin) as a Snail2 target gene whose repression is critical for chick neural crest cell migration. Knock-down and overexpression of αN-catenin enhances and inhibits neural crest cell migration, respectively. Furthermore, our results reveal that αN-catenin regulates the appropriate movement of neural crest cells away from the neural tube into the embryo. Collectively, our data point to a novel function of an adherens junction protein in facilitating the proper migration of neural crest cells during the development of the vertebrate embryo.  相似文献   

9.
Neural crest cells (NCCs) are vertebrate‐specific transient, multipotent, migratory stem cells that play a crucial role in many aspects of embryonic development. These cells emerge from the dorsal neural tube and subsequently migrate to different regions of the body, contributing to the formation of diverse cell lineages and structures, including much of the peripheral nervous system, craniofacial skeleton, smooth muscle, skin pigmentation, and multiple ocular and periocular structures. Indeed, abnormalities in neural crest development cause craniofacial defects and ocular anomalies, such as Axenfeld‐Rieger syndrome and primary congenital glaucoma. Thus, understanding the molecular regulation of neural crest development is important to enhance our knowledge of the basis for congenital eye diseases, reflecting the contributions of these progenitors to multiple cell lineages. Particularly, understanding the underpinnings of neural crest formation will help to discern the complexities of eye development, as these NCCs are involved in every aspect of this process. In this review, we summarize the role of ocular NCCs in eye development, particularly focusing on congenital eye diseases associated with anterior segment defects and the interplay between three prominent molecules, PITX2, CYP1B1, and retinoic acid, which act in concert to specify a population of neural crest‐derived mesenchymal progenitors for migration and differentiation, to give rise to distinct anterior segment tissues. We also describe recent findings implicating this stem cell population in ocular coloboma formation, and introduce recent evidence suggesting the involvement of NCCs in optic fissure closure and vascular development. Birth Defects Research (Part C) 105:87–95, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
11.
The vertebrate enteric nervous system is formed by a rostro-caudally directed invasion of the embryonic gastrointestinal mesenchyme by neural crest cells. Failure to complete this invasion results in the distal intestine lacking intrinsic neurons. This potentially fatal condition is called Hirschsprung's Disease. A mathematical model of cell invasion incorporating cell motility and proliferation of neural crest cells to a carrying capacity predicted invasion outcomes to imagined manipulations, and these manipulations were tested experimentally. Mathematical and experimental results agreed. The results show that the directional invasion is chiefly driven by neural crest cell proliferation. Moreover, this proliferation occurs in a small region at the wavefront of the invading population. These results provide an understanding of why many genes implicated in Hirschsprung's Disease influence neural crest population size. In addition, during in vivo development the underlying gut tissues are growing simultaneously as the neural crest cell invasion proceeds. The interactions between proliferation, motility and gut growth dictate whether or not complete colonization is successful. Mathematical modeling provides insights into the conditions required for complete colonization or a Hirschsprung's-like deficiency. Experimental evidence supports the hypotheses suggested by the modeling.  相似文献   

12.
The neural crest, a population of multipotent progenitor cells, is a defining feature of vertebrate embryos. Neural crest precursor cells arise at the neural plate border in response to inductive signals, but much remains to be learned about the molecular mechanisms underlying their induction. Here we show that the protooncogene c-Myc is an essential early regulator of neural crest cell formation in Xenopus. c-myc is localized at the neural plate border prior to the expression of early neural crest markers, such as slug. A morpholino-mediated "knockdown" of c-Myc protein results in the absence of neural crest precursor cells and a resultant loss of neural crest derivatives. These effects are not dependent upon changes in cell proliferation or cell death. Instead, our findings reveal an important and unexpected role for c-Myc in the specification of cell fates in the early ectoderm.  相似文献   

13.
Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in patterning the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.  相似文献   

14.
Regulation is a significant developmental event because successful cell proliferation and migration are critical to shaping young embryos. Regulation -- the replacement of undifferentiated embryonic cells by other cells in response to signals received from the environment -- is distinct from wound healing and regeneration. Investigations on regulation of neural crest cells span all vertebrates and have revealed that regulative ability varies both among classes (even species), and spatially and temporally within individuals. In general, there is greatest regulation for cranial neural crest cells, less for trunk, and virtually none forcardiac. Regulation also appears to be more complete at early embryonic stages. Fate-mapping studies have demonstrated that large regions of neural crest cells must be removed to generate missing or morphologically reduced structures. Recent studies reveal that less extensive neural crest cell extirpations result in normal morphology of cartilaginous and neuronal elements in the head, and normal development of pigmentation in the trunk. Ablation of cardiac neural crest cells frequently generates abnormalities of the heart, great vessels and parasympathetic nerve innervation. Decreased cell death, increased division, change in fate and altered migration are possible cellular mechanisms of regulation. In mostcases, the specific mechanisms of regulation are unknown, but a major premise underlying regulation is that cell potential is greater than cell fate. This concept was born from studies which demonstrated that some cells were able to express alternative fates if transplanted to a new environment. Among the potential cellular mechanisms for regulation, cell migration has received the most attention. Following ablation of neural crest cells, replacement neural crest cells migrate into gaps, most frequently from anterior/posterior locations. Cells from surrounding epidermal and neural ectoderm may have limited regulative ability, while compensation by cells from the ventral neural tube has been demonstrated to an even lesser extent. Regulation by such non-crest cells would require their transformation into neural crest cells. The potential for regulation of neural crest by placodal cells supports a closer relationship between neural crest and placodal ectoderm than previously recognized. Decreased cell death has been discussed primarily with reference to (1) cranial ganglia that have dual contributions from neural crest and placodal cells and (2) programmed cell death in rhombomeres three and five. Increased cell division in response to neural crest ablation is likely more common than has been reported, but this mechanism is difficult to interpret without a 3-D context for viewing how patterns of division differ from normal. Lastly, changes in cell fate may be the driving factor in regulation of embryonic cells. It has been repeatedly demonstrated thatcell potential is greaterthan cell fate. Once reliable mechanisms for assessing cell potential are established, we may find that fates are commonly altered in response to environmental signals. Regulation is therefore significant both as a basic developmental mechanism and as a mechanism for evolutionary change. The more labile the fate of embryonic cells, the more potential there is for maintaining existing characters and for generating new ones. According to Ettensohn (1992, p. 50), further analysis of such systems might . With regard to the neural crest, studies on regulation of this vital population of cells provide insight to the origin of the neural crest, to embryonic repair, and to the source of many craniofacial malformations, heart and other embryonic defects. (ABSTRACT TRUNCATED)  相似文献   

15.
Neural crest cells are a migratory population that forms most of the peripheral nervous system, facial skeleton, and numerous other derivatives. These cells arise from the neural ectoderm and are first recognizable as discrete cells after neural tube closure. In this review, I summarize the results of studies from our laboratory on neural crest cell lineage and origin. Our recent experiments demonstrate that interactions between the presumptive neural plate and the nonneural ectoderm are likely to be instrumental in the induction of the avian neural crest. Juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. However, neural crest cells do not appear to be segregated from other neuroepithelial cells; cell lineage studies have demonstrated that individual precursor cells within the neural tube can give rise to both neural crest and neural tube derivatives as diverse as sensory, commissural, and motor neurons. This suggests that individual neuroectodermal cells are multipotent, such that a precursor within the neural tube has the ability to form both neural tube (central nervous system) and neural crest (peripheral nervous system and other) derivatives. Further support for flexibility in the developmental program of neuroepithelial cells comes from experiments in which the cranial neural folds are ablated; this results in regulation by the remaining ventral neural tube cells to form neural crest cells after the endogenous neural crest is removed. At later stage of development, this regulative capacity is lost. Following their emigration from the neural tube, neural crest cells become progressively restricted to defined embryonic states. Taken together, these experiments demonstrate that: (1) the neural crest is an induced population that arises by interactions within the ectoderm; (2) initially, progenitor cells are multipotent, having the potential to form multiple neural crest and neural tube derivatives; and (3) with time, the precursors become progressively restricted to form neural crest derivatives and eventually to individual phenotypes.  相似文献   

16.
17.
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: (1) what establishes the pathways of migration? And (2), what controls the final destination and differentiation of various neural crest subpopulations? These questions will be addressed in this Review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk.The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: (1) the vagal-level neural crest cells exhibit modest developmental bias; (2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively and (3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but take the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.Key words: neural crest, morphogenesis, cell migration, chicken embryo, fate restriction, vagal neural crest, pathways  相似文献   

18.
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial‐to‐mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.  相似文献   

19.
Hoxa1 and Hoxb1 have overlapping synergistic roles in patterning the hindbrain and cranial neural crest cells. The combination of an ectoderm-specific regulatory mutation in the Hoxb1 locus and the Hoxa1 mutant genetic background results in an ectoderm-specific double mutation, leaving the other germ layers impaired only in Hoxa1 function. This has allowed us to examine neural crest and arch patterning defects that originate exclusively from the neuroepithelium as a result of the simultaneous loss of Hoxa1 and Hoxb1 in this tissue. Using molecular and lineage analysis in this double mutant background we demonstrate that presumptive rhombomere 4, the major site of origin of the second pharyngeal arch neural crest, is reduced in size and has lost the ability to generate neural crest cells. Grafting experiments using wild-type cells in cultured normal or double mutant mouse embryos demonstrate that this is a cell-autonomous defect, suggesting that the formation or generation of cranial neural crest has been uncoupled from segmental identity in these mutants. Furthermore, we show that loss of the second arch neural crest population does not have any adverse consequences on early patterning of the second arch. Signalling molecules are expressed correctly and pharyngeal pouch and epibranchial placode formation are unaffected. There are no signs of excessive cell death or loss of proliferation in the epithelium of the second arch, suggesting that the neural crest cells are not the source of any indispensable mitogenic or survival signals. These results illustrate that Hox genes are not only necessary for proper axial specification of the neural crest but that they also play a vital role in the generation of this population itself. Furthermore, they demonstrate that early patterning of the separate components of the pharyngeal arches can proceed independently of neural crest cell migration.  相似文献   

20.
Effects of isotretinoin on the behavior of neural crest cells in vitro   总被引:2,自引:0,他引:2  
Isotretinoin (13-cis-retinoic acid), an anti-acne medication, has been found to cause severe birth defects which affect the craniofacial elements, ear, heart, thymus, and central nervous system. Many of these structures receive contributions from the cranial neural crest. Here, we examine the possibility that these teratogenic effects are due to disturbances in neural crest development. Cranial and trunk neural crest explant cultures were exposed to different concentrations of isotretinoin and the cell morphology was monitored at daily intervals. Treated neural crest cells often became rounded or spindle shaped, separated from their neighbors, and frequently detached from the substrate or clumped together. In contrast, neural tube cells and cardiac fibroblasts were relatively unaffected by the drug. These results suggest that isotretinoin selectively affects neural crest cells by decreasing their cell-substratum adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号