首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcium (Ca) affects many cellular functions of the respiratory tract mucosa and might alter the viscoelastic properties of mucus. To evaluate Ca homeostasis in a respiratory epithelium we investigated transport of Ca by the canine tracheal mucosa. Mucosal tissues were mounted in Ussing-type chambers and bathed with Krebs-Henseleit solution at 37 degrees C. Unidirectional fluxes of 45Ca were determined in tissues that were matched by conductance and short-circuit current (SCC). Under short-circuit conditions there was a significant net Ca secretion of 1.82 +/- 0.36 neq . cm-2 . h-1 (mean +/- SE). Under open-circuit conditions, where the spontaneous transepithelial potential difference could attract Ca toward the lumen, net Ca secretion increased significantly to 4.40 +/- 1.14 compared with 1.54 +/- 1.17 neq . cm-2 . h-1 when the preparation was short-circuited. Addition of a metabolic inhibitor, 2,4-dinitrophenol (2 mM in the mucosal bath), decreased tissue conductance and SCC and slightly decreased the unidirectional movement of Ca from submucosa to lumen. Submucosal epinephrine (10 microM) significantly enhanced Ca secretion by 2.0 +/- 0.63 neq . cm-2 . h-1. Submucosal ouabain (0.1 mM) failed to inhibit Ca secretion. The data suggest that canine tracheal mucosa secretes Ca; this secretory process is augmented by epinephrine or by the presence of a transepithelial potential difference as found under in vivo conditions.  相似文献   

2.
Mammalian bronchial epithelium absorbs Na+ under basal conditions, but Cl- secretion can be induced. We studied the effects of several modes of metabolic inhibition on the bioelectric properties and solute permeability of dog bronchial epithelium mounted in Ussing chambers. Net Na+ absorption and short-circuit current were inhibited by approximately 75% by hypoxia or by 10(-3) M NaCN. The reduced net Na+ absorption was characterized by a decrease in absorptive flux and an increase in backflux. The latter change was proportional to an increase in permeability to [14C]mannitol, implying that solute flow through a paracellular shunt was increased. In contrast, the reduction of conductance expected from exposure to amiloride (0.94 +/- 0.15 ms/cm2 or 12%) was abolished by NaCN pretreatment. Metabolic inhibition also decreased epithelial conductance and unidirectional Cl- fluxes by approximately 25%. NaCN rapidly and reversibly inhibited the hyperpolarization of potential difference (PD) induced by low luminal bath [Cl-]. This effect was mimicked by the Cl- channel blocker, 5-nitro-2-(3-phenylpropylamino) benzoic acid. Because the transepithelial Cl- diffusion PD reflects, in part, the depolarization of the Cl- -conductive apical cell membrane, metabolic inhibition appears to affect this path. We conclude that metabolic inhibition not only decreased net ion transport by dog bronchial epithelium but also inhibited cellular Na+- and Cl- -conductive pathways and increased paracellular permeability.  相似文献   

3.
The regulated Cl(-) secretory apparatus of T84 cells responds to several pharmacological agents via different second messengers (Ca(2+), cAMP, cGMP). However, information about water movements in T84 cells has not been available. In the absence of osmotic or chemical gradient, we observed a net secretory transepithelial volume flux (J(w) = -0.16 +/- 0.02 microl.min(-1).cm(-2)) in parallel with moderate short-circuit current values (I(sc) = 1.55 +/- 0.23 microA/cm(2)). The secretory J(w) reversibly reverted to an absorptive value when A-23187 was added to the serosal bath. Vasoactive intestinal polypeptide increased I(sc), but, unexpectedly, J(w) was not affected. Bumetanide, an inhibitor of basolateral Na(+)-K(+)-2Cl(-) cotransporter, completely blocked secretory J(w) with no change in I(sc). Conversely, serosal forskolin increased I(sc), but J(w) switched from secretory to absorptive values. Escherichia coli heat-stable enterotoxin increased secretory J(w) and I(sc). No difference between the absorptive and secretory unidirectional Cl(-) fluxes was observed in basal conditions, but after STa stimulation, a significant net secretory Cl(-) flux developed. We conclude that, under these conditions, the presence of secretory or absorptive J(w) values cannot be shown by I(sc) and ion flux studies. Furthermore, RT-PCR experiments indicate that aquaporins were not expressed in T84 cells. The molecular pathway for water secretion appears to be transcellular, moving through the lipid bilayer or, as recently proposed, through water-solute cotransporters.  相似文献   

4.
Paths of ion transport across canine fetal tracheal epithelium   总被引:1,自引:0,他引:1  
Fluid secretion by the fetal sheep lung is thought to be driven by secretion of Cl- by the pulmonary epithelium. We previously demonstrated Cl- secretion by tracheal epithelium excised from fetal dogs and sheep. In this study we characterized the ion transport pathways across fetal canine tracheal epithelium. The transport of Na+ and Cl- across trachea excised from fetal dogs was evaluated from transepithelial electrical properties and isotope fluxes. Under basal conditions the tissues were characterized by a lumen-negative potential difference (PD) of 11 mV and conductance of 5.2 mS/cm2. The short-circuit current (Isc) was 43 microA/cm2 (1.6 mueq.cm-2.h-1). Basal Na+ flows were symmetrical, but net Na+ absorption (1.1 mueq.cm-2.h-1) could be induced by exposure of the luminal surface to amphotericin B (10(-6) M). Bilateral replacement of Na+ reduced Isc by 85%. Replacement of submucosal Na+ or exposure to submucosal furosemide (10(-4) M) reduced net Cl- secretion by 60-70%. Luminal exposure to indomethacin (10(-6) M) induced a 50% decrease in Isc, whereas isoproterenol (10(-6) M) increased Isc by 120%. The properties of the Cl- secretory pathway across fetal dog trachea are consistent with the model proposed for Cl- secretion across adult dog trachea and other Cl- -secreting tissues (e.g., bullfrog cornea and shark rectal gland). The absence of basal Na+ absorption by fetal dog trachea probably reflects limited apical membrane Na+ permeability.  相似文献   

5.
Thiazides inhibit voltage-independent NaCl absorption in the urinary bladder of the winter flounder presumably by blocking an electroneutral mucosal Na/Cl co-transporter. As thiazides stimulate calcium absorption in mammalian distal convoluted tubule while inhibiting NaCl absorption, we studied the effects of hydrochlorothiazide (HCTZ) on unidirectional 45Ca fluxes and intracellular electrical potential in short-circuited bladders to examine possible mechanisms of HCTZ effects on calcium transport. Basal secretory calcium flux was, on average, slightly larger than absorptive flux, reflecting small net calcium secretion. Mucosal addition of HCTZ (10(-4) M) stimulated absorptive calcium flux by 46% while the secretory flux was unaltered. Thus, HCTZ tended to induce net calcium absorption. Pre-treatment with serosal ouabain (10(-4) M) attenuated the HCTZ-induced increase in absorptive calcium flux. Moreover, HCTZ hyperpolarized the mucosal membrane potential by 18% as measured by conventional open-tip microelectrodes. These effects of HCTZ are consistent with the hypothesis that HCTZ indirectly stimulates Na/Ca exchange located at the serosal membrane. In conclusion, HCTZ in flounder urinary bladder, as in mammalian distal convoluted tubule, simultaneously inhibits NaCl absorption and stimulates calcium absorption. This study expands on the functional similarities between the flounder urinary bladder and the mammalian distal convoluted tubule.  相似文献   

6.
Summary Canine tracheal epithelium secretes Cl from the submucosal to the mucosal surface via an electrogenic transport process that appears to apply to a wide variety of secretory epithelia. Cl exit across the apical membrane is thought to be a passive, electrically conductive process. To examine the cellular mechanism of Cl secretion we studied the effect of anthracene-9-carboxylic acid (9-AC), an agent known to inhibit the Cl conductance of muscle membrane. When added to the mucosal solution, 9-AC rapidly and reversibly decreases short-circuit current and transepithelial conductance, reflecting a reduction in electrogenic Cl secretion. The inhibition is concentration-dependent and 9-AC does not appear to compete with Cl for the transport process. The decrease in current and conductance results from a decrease in the net and both unidirectional transepithelial Cl fluxes without substantial alterations of Na fluxes. Furthermore, 9-AC specifically inhibits a Cl conductance: tissues bathed in Cl-free solutions showed no response to 9-AC. Likewise, when the rate of secretion and Cl conductance were minimized with indomethacin, addition of 9-AC did not alter transepithelial conductance. In contrast, neither removal of Na from the media nor blockade of the apical Na conductance with amiloride prevented a 9-AC-induced decrease in transepithelial conductance. We also found that the effect of 9-AC is independent of transepithelial transport: 9-AC decreases transepithelial conductance despite inhibition of Cl secretion with ouabain or furosemide. Intracellular electrophysiologic techniques were used to localize the effect of 9-AC to a reduction of the electrical conductance of the apical cell membrane: 9-AC hyperpolarizes the electrical potential difference across the apical membrane and decreases its relative conductance. 9-AC also prevents the characteristic changes in the cellular electrical potential profile, transepithelial conductance, and the ratio of membrane conductances produced by a reduction in mucosal bathing solution Cl concentration. These results indicate that 9-AC inhibits Cl secretion in tracheal epithelium by blocking an electrically conductive Cl exit step in the apical cell membrane. Thus, they support a cellular model of Cl secretion in which Cl leaves the cell across a Cl permeable apical membrane driven by its electrochemical gradient.  相似文献   

7.
The unidirectional fluxes of sodium, chloride, and of the bicarbonate and CO(2) pair were determined across the isolated large intestine of the bullfrog, Rana catesbiana. The isolated large intestine of the frog is characterized by a mean transmembrane potential of 45 mv., serosal surface positive with respect to mucosal. The unidirectional sodium flux from mucosal to serosal surface was found to be equal to the short-circuit current, thus the net flux was less than the simultaneous short-circuit current. This discrepancy between active sodium transport and short-circuit current can be attributed to the active transport of cation in the same direction as sodium and/or the active transport of anion in the opposite direction. The unidirectional fluxes of chloride and the bicarbonate and CO(2) pair revealed no evidence for active transport of either anion. A quantitative study of chloride fluxes at 45 mv. revealed a flux ratio of 1.8 which is considerably less than a ratio of 6 expected for free passive diffusion. It was concluded that a considerable proportion of the isotopic transfer of chloride could be attributed to "exchange diffusion." Study of the electrical properties of the isolated frog colon reveals that it can be treated as a simple D. C. resistance over the range of -20 to +95 mv.  相似文献   

8.
Temporal changes in sodium flux rates and the electrical properties of two regions of the intestine appear to occur in a yearly cycle. In RIIIA, the anterior portion of the mid-intestine, the short-circuit current in January and April preparations is 60.2 and 10.2 microA cm-2, respectively and the net sodium fluxes are 1.50 and 1.24 mu Eq cm-2 hr-1, respectively. In RIIIB, the posterior portion of the mid-intestine, the short-circuit current in January and April preparations is 50.7 and 27.9 microA cm-2, respectively, while the net sodium fluxes are 1.78 and 0.59 mu Eq cm-2 hr-1, respectively. Sodium transport in RIIIB is inhibited by amiloride (10(-4)M) in January preparations but is refractory to amiloride (less than or equal to 10(-3)M) in April preparations.  相似文献   

9.
Bernick EP  Stiffler DF 《Peptides》2000,21(6):779-783
A possible role for the peptide hormone guanylin was investigated in frog skin (Rana pipiens) epithelium. Sodium and chloride fluxes in response to this peptide were evaluated in Ussing-type chambers. Net and unidirectional Na(+) fluxes were measured by using (22)Na(+) and atomic absorption analysis of total [Na(+)], whereas net Cl(-) fluxes were measured by using electrometric titration for [Cl(-)]. Mucosal application of guanylin (0.5-2.0 micromol/l) caused marked increases in serosal to mucosal net flux and efflux of Na(+). Serosal application of guanylin over the same dose range caused similar large increases in net serosal to mucosal (S-->M) Na(+) and Cl(-) flux as well as Na(+) efflux. Responses of Na(+) influx were small and inconsistent. When frog skin was bathed on the serosal side with Cl(-)-free Ringer's solution mucosal application of guanylin stimulated large efflux and S-->M net fluxes of Na(+). Serosal treatment yielded large Na(+) effluxes and S-->M Na(+) and Cl(-) net fluxes. When frog skin serosal surfaces were bathed with Na(+)- free Ringer's solution mucosal guanylin treatment had no effect but serosal treatment produced large S-->M Cl(-) net fluxes.  相似文献   

10.
The identity of the current carriers in canine lingual epithelium in vitro   总被引:2,自引:0,他引:2  
Ion transport across the lingual epithelium has been implicated as an early event in gustatory transduction. The fluxes of isotopically labelled Na+ and Cl- were measured across isolated canine dorsal lingual epithelium under short-circuit conditions. The epithelium actively absorbs Na+ and to a lesser extent actively secretes Cl-. Under symmetrical conditions with Krebs-Henseleit buffer on both sides, (1) Na+ absorption accounts for 46% of the short-circuit current (Isc); (2) there are two transcellular Na+ pathways, one amiloride-sensitive and one amiloride-insensitive; (3) ouabain, added to the serosal solution, inhibits both Isc and active Na+ absorption. When hyperosmotic (0.25 M) NaCl is placed in the mucosal bath, both Isc and Na+ absorption increase; net Na+ absorption is at least as much as Isc. Ion substitution studies indicate that the tissue may transport a variety of larger ions, though not as effectively as Na+ and Cl-. Thus we have shown that the lingual epithelium, like other epithelia of the gastrointestinal tract, actively transports ions. However, it is unusual both in its response to hyperosmotic solutions and in the variety of ions that support a transepithelial short-circuit current. Since sodium ion transport under hyperosmotic conditions has been shown to correlate well with the gustatory neural response, the variety of ions transported may likewise indicate a wider role for transport in taste transduction.  相似文献   

11.
There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar-activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na-preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans.  相似文献   

12.
Unidirectional chloride efflux and influx were studied in giant barnacle muscle fibers that were internally dialyzed. When cyclic 3'5'- adenosine monophosphate (cAMP) was included in the dialysis fluid, both unidirectional fluxes were stimulated by about the same amount. This stimulation was not associated with measurable changes either in membrane electrical conductance or with net movements of chloride. The stimulation required the trans-side presence of chloride. The stimulated flux was inhibited by the sulfonic acid stilbene derivatives 4-acetamido-4'-isothiocyanostilbene-2',2'-disulfonate (SITS) and 4,4'- diisothiocyanostilbene-2,2'-disulfonate (DIDS) or by furosemide. When cAMP was presented in high concentrations (10-5 M), the effect on chloride fluxes was characterized by a desensitization phenomenon. This desensitization was not the result of an increased amount of phosphodiesterase activity, but may be related to ATP and/or intracellular calcium levels. These results further support the hypothesis that the barnacle sarcolemma possesses a specialized chloride transport mechanism that largely engages in Cl-Cl exchange under conditions of normal intracellular pH.  相似文献   

13.
Developmental changes in the tracheal mucociliary system in neonatal sheep   总被引:1,自引:0,他引:1  
We studied the postnatal development of the tracheal epithelium and mucociliary system in neonatal sheep. Secretion of macromolecules (radiolabeled with 35SO4 and [3H]-threonine), unidirectional fluxes of Cl-, Na+, and water (measured with radioactive tracers), and ciliary beat frequency (CBF) were measured in tracheal tissues in vitro. Tracheal mucus transport velocity (TMV) was measured in vivo. Sheep were studied at 0, 2, 4, 8, and greater than 24 (adult) wk after birth. In newborn sheep trachea, secretion of macromolecules was significantly elevated (cf. adults), and there was basal net secretion of Cl- under short-circuit and open-circuit conditions. This induced open-circuit secretion of Na+. Secretion of macromolecules decreased rapidly by 2 wk (by 40-50%) and was not different from adult values by 4 wk. Active Na+ absorption developed rapidly, and from 2 wk onward it predominated under open-circuit conditions, inducing net Cl- absorption. These changes in secretory function were associated with an age-related increase in TMV, whereas inherent tracheal CBF was unchanged. In sheep, therefore, the newborn's trachea has elevated secretion of macromolecules and secretes Cl- and liquid under basal conditions. Normal secretory function (a reduction in secretion of macromolecules coupled with net absorption of ions and presumably of liquid also) approaches adult function by 2-4 wk of age.  相似文献   

14.
Bioelectric properties and ion transport of excised human segmental/subsegmental bronchi were measured in specimens from 40 patients. Transepithelial electric potential difference (PD), short-circuit current (Isc), and conductance (G), averaged 5.8 mV (lumen negative), 51 microA X cm-2, and 9 mS X cm-2, respectively. Na+ was absorbed from lumen to interstitium under open- and short-circuit conditions. Cl- flows were symmetrical under short-circuit conditions. Isc was abolished by 10(-4) M ouabain. Amiloride inhibited Isc (the concentration necessary to achieve 50% of the maximal effect = 7 X 10(-7) M) and abolished net Na+ transport. PD and Isc were not reduced to zero by amiloride because a net Cl- secretion was induced that reflected a reduction in Cl- flow in the absorptive direction (Jm----sCl-). Acetylcholine (10(-4) M) induced an electrically silent, matched flow of Na+ (1.7 mueq X cm-1 X h-1) and Cl- (1.9 mueq X cm-12 X h-1) toward the lumen. This response was blocked by atropine. Phenylephrine (10(-5) M) did not affect bioelectric properties or unidirectional ion flows, whereas isoproterenol (10(-5) M) induced a small increase in Isc (10%) without changing net ion flows significantly. We conclude that 1) Na+ absorption is the major active ion transport across excised human bronchi, 2) Na+ absorption is both amiloride and ouabain sensitive, 3) Cl- secretion can be induced by inhibition of the entry of luminal Na+ into the epithelia, and 4) cholinergic more than adrenergic agents modulate basal ion flow, probably by affecting gland output.  相似文献   

15.
Sulfate transport across plasma membranes has been described in a wide variety of organisms and cell types including gastrointestinal epithelia. Sulfate transport can be coupled to proton, sodium symport or antiport processes involving chloride or bicarbonate. It had previously been observed in Aplysia gut that sulfate was actively absorbed. To understand the mechanism for this transport, short-circuited Aplysia californica gut was used. Bidirectional transepithelial fluxes of both sodium and sulfate were measured to see whether there was interaction between the fluxes. The net mucosal-to-serosal flux of Na(+) was enhanced by the presence of sulfate and it was abolished by the presence of serosal ouabain. Similarly, the net mucosal-to-serosal flux of sulfate was dependent upon the presence of Na(+) and was abolished by the presence of serosal ouabain. Theophylline, DIDS and bumetanide, added to either side, had no effect on transepithelial potential difference or short-circuit current in the Aplysia gut bathed in a Na2SO4 seawater medium. However, mucosal thiosulfate inhibited the net mucosal-to-serosal fluxes of both sulfate and Na(+) and the thiosulfate-sensitive Na(+) flux to that of sulfate was 2:1. These results suggest the presence of a Na-SO4 symporter in the mucosal membrane of the Aplysia californica foregut absorptive cell.  相似文献   

16.
The transmural potential difference, short-circuit current, and Na fluxes have been investigated in an in vitro preparation of isolated rabbit ileum. When the tissue is perfused with a physiological buffer, the serosal surface is electrically positive with respect to the mucosal surface and the initial potential difference in the presence of glucose averages 9 mv. Unidirectional and net Na fluxes have been determined under a variety of conditions, and in each instance, most if not all of the simultaneously measured short-circuit current could be attributed to the active transport of Na from mucosa to serosa. Active Na transport is dependent upon the presence of intact aerobic metabolic pathways and is inhibited by low concentrations of ouabain in the serosal medium. A method is described for determining whether a unidirectional ionic flux is the result of passive diffusion alone, in the presence of active transport of that ion in the opposite direction. Using this method we have demonstrated that the serosa-to-mucosa flux of Na may be attributed to passive diffusion with no evidence for the presence of carrier-mediated exchange diffusion or the influence of solvent-drag.  相似文献   

17.
Phosphate transport across plasma membranes has been described in a wide variety of organisms and cell types including gastrointestinal epithelia. Phosphate transport across apical membranes of vertebrate gastrointestinal epithelia requires sodium; whereas, its transport across the basolateral membrane requires antiport processes involving primarily chloride or bicarbonate. To decipher the phosphate transport mechanism in the foregut apical membrane of the mollusc, Aplysia californica, in vitro short-circuited Aplysia californica gut was used. Bidirectional transepithelial fluxes of both sodium and phosphate were measured to see whether there was interaction between the fluxes. The net mucosal-to-serosal flux of Na+ was enhanced by the presence of phosphate and it was abolished by the presence of serosal ouabain. Similarly, the net mucosal-to-serosal flux of phosphate was dependent upon the presence of Na+ and was abolished by the presence of serosal ouabain. Theophylline, DIDS and bumetande, added to either side, had no effect on transepithelial difference or short-circuit current in the Aplysia gut bathed in a Na2HPO4 seawater medium. However, mucosal arsenate inhibited the net mucosal-to-serosal fluxes of both phosphate and Na+ and the arsenate-sensitive Na+ flux to that of phosphate was 2:1. These results suggest the presence of a Na-PO4 symporter in the mucosal membrane of the Aplysia californica foregut absorptive cell.  相似文献   

18.
(1) The uptake and bidirectional fluxes of 1-α-methyl d-glucoside were studied in isolated rabbit colonic mucosa. (2) The uptake of α-methyl d-glucoside was linear over the first 30 min and reached maximum after 1 h; was a saturable function of sugar concentration and was Na+-dependent. (3) An increase in sugar uptake across the mucosal border and net transepithelial sugar flux across sheets of colon was observed in the presence of 10?4 M amiloride. (4) Phlorizin (10?4 M) inhibited sugar uptake into the tissue water and abolished net sugar flux. Amiloride-stimulated sugar uptake was also abolished by 10?4 M phlorizin. (5) Ouabain (10?4 M) prevented the effect of amiloride on sugar uptake and inhibited sugar uptake into the tissue. (6) These results corroborate the findings of Henriques de Jesus et al.(Henriques de Jesus, C., Da Gracia Emilio, M. and Santos, M.A. Gastroenterol. Clin. Biol. 3, 172–173) who found a sugar-dependent increase in short-circuit current in colonic mucosa exposed to amiloride.  相似文献   

19.
The possible existence of transepithelial bicarbonate transport across the isolated bovine ciliary body was investigated by employing a chamber that allows for the measurement of unidirectional, radiolabeled fluxes of CO2 + HCO. No net flux of HCO was detected. However, acetazolamide (0.1 mM) reduced the simultaneously measured short-circuit current (I(sc)). In other experiments in which (36)Cl- was used, a net Cl- flux of 1.12 microeq. h(-1). cm(-2) (30 microA/cm(2)) in the blood-to-aqueous direction was detected. Acetazolamide, as well as removal of HCO from the aqueous bathing solution, inhibited the net Cl- flux and I(sc). Because such removal should increase HCO diffusion toward the aqueous compartment and increase the I(sc), this paradoxical effect could result from cell acidification and partial closure of Cl- channels. The acetazolamide effect on Cl- fluxes can be explained by a reduction of cellular H+ and HCO (generated from metabolic CO2 production), which exchange with Na+ and Cl- via Na+/H+ and Cl-/HCO exchangers, contributing to the net Cl- transport. The fact that the net Cl- flux is about three times larger than the I(sc) is explained with a vectorial model in which there is a secretion of Na+ and K+ into the aqueous humor that partially subtracts from the net Cl- flux. These transport characteristics of the bovine ciliary epithelium suggest how acetazolamide reduces intraocular pressure in the absence of HCO transport as a driving force for fluid secretion.  相似文献   

20.
Lithium transport across the urinary bladder of Bufo marinus has been studied by means of the short-circuit current technique, as well as unidirectional ion flux measurements. Exposure to lithium of the epithelial (mucosal) surface of this preparation led to a slow, progressive decrease of ion transport, with increasing discrepancy between short-circuit current and lithium influx; in fact there was still an appreciable lithium influx across bladder exposed to amiloride even though short-circuit current was suppressed. Ohmic conductance and sodium efflux barely increased under these circumstances. Upon replacement of lithium by sodium on the epithelial side, the preparations recovered slowly indeed, and residual lithium could be detected in bladder tissue for more than 2 hr while the rate of sodium extrusion at the basal-lateral cell border was slowed down. Recovery from exposure to lithium was accelerated by vasopressin and amphotericin, both of which facilitate sodium entry at the apical border of the epithelium. Thus the lasting deleterious influence of lithium on sodium transport might result from the fact that this ion, once trapped in the cytoplasm, closes the sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号