首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Twelve out of twenty-nine compounds isolated from benthic marine algae from the phyla Chlorophyta, Phaeophyta and Rhodophyta have been found to be potent inhibitors of bee venom derived phospholipase A2 (PLA2) (> 50%) in the M range. The compounds investigated were from: Bryopsis pennata, Rhipocephalus phoenix, Caulerpa prolifera, C. racemosa, C. bikinensis, Cymopolia barbata, Laurencia cf. palisada, Laurencia sp., Ochtodes crockeri, Liagora farinosa, Sphaerococcus coronipifolius, Phacelocarpus labillardieri, Dictyota sp., B furcaria galapagensis, Stypopodium zonale, Dictyopteris undulata, Stoechospermum marginatum, Dictyopteris divaricata, Dilophus fasciola and Dilophus sp. This is the first report of bee venom PLA2 inhibition in vitro by pure compounds isolated from marine algae.  相似文献   

2.
3.
A key feature of prion diseases is the conversion of the cellular prion protein (PrP(C)) into disease-related isoforms (PrP(Sc)), the deposition of which is thought to lead to neurodegeneration. In this study a pharmacological approach was used to determine the metabolic pathways involved in the formation of protease-resistant PrP (PrP(res)) in three prion-infected cell lines (ScN2a, SMB, and ScGT1 cells). Daily treatment of these cells with phospholipase A(2) (PLA(2)) inhibitors for 7 days prevented the accumulation of PrP(res). Glucocorticoids with anti-PLA(2) activity also prevented the formation of PrP(res) and reduced the infectivity of SMB cells. Treatment with platelet-activating factor (PAF) antagonists also reduced the PrP(res) content of cells, while the addition of PAF reversed the inhibitory effect of PLA(2) inhibitors on PrP(res) formation. ScGT1 cells treated with PLA(2) inhibitors or PAF antagonists for 7 days remained clear of detectable (PrPres) when grown in control medium for a further 12 weeks. Treatment of non-infected cells with PLA(2) inhibitors or PAF antagonists reduced PrP(C) levels suggesting that limiting cellular PrP(C) may restrict prion formation in infected cells. These data indicate a pivotal role for PLA(2) and PAF in controlling PrP(res) formation and identify them as potential therapeutic agents.  相似文献   

4.
Phospholipase A2   总被引:7,自引:0,他引:7  
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins (PGs) and leukotrienes (LTs). The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular-weight, Ca2+-requiring, secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, host defense, and atherosclerosis. The cytosolic PLA2 (cPLA2) family consists of 3 enzymes, among which cPLA2alpha plays an essential role in the initiation of AA metabolism. Intracellular activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains 2 enzymes and may play a major role in membrane phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family represents a unique group of PLA2 that contains 4 enzymes exhibiting unusual substrate specificity toward PAF and/or oxidized phospholipids. In this review, we will overview current understanding of the properties and functions of each enzyme belonging to the sPLA2, cPLA2, and iPLA2 families, which have been implicated in signal transduction.  相似文献   

5.
6.
Arachidonic acid (AA) can be released from membrane phospholipids by the action of phospholipase A2 (PLA2). There is evidence that unsaturated fatty acids, particularly AA, released from membrane phospholipids are required to activate the respiratory burst of macrophages. The data reported here indicate that peritoneal macrophages harvested 30 min after i.p. injection of PLA2 can phagocytose Candida albicans more efficiently and emit more chemoluminescence (CL) than normal cells when stimulated by zymosan. PLA2 injection also enhances the CL of peritoneal cells from mice already stimulated by immunomodulators such as trehalose dimycolate (TDM), bestatin, or oncostatic drugs such as aclacinomycin (ACM). CL is not sensitive to potassium cyanide (KCN), but is inhibited by catalase, superoxide dismutase (SOD), nordihydroguaiaretic acid (NDGA) and high doses of indomethacin (10(-3) M). In vivo PLA2 treatment stimulates the synthesis of both cyclooxygenase and lipoxygenase derivatives of AA metabolism (PGE2, 6-keto, PGF1 alpha TXB2 and LTC4). Inhibitors of AA metabolism (NDGA, indomethacin) modulate the production of free oxidizing radicals in this experimental model, partly because of their effect on AA metabolism, as determined by the measuring immunoreactive products. However, this work indicates that the effects of these inhibitors, which have been extensively used in CL studies, should be interpreted with caution, since their specificity for AA metabolism is relative.  相似文献   

7.
The entomopathogenic bacteria Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata suppress insect immune responses by inhibiting the catalytic activity of phospholipase A(2) (PLA(2)), which results in preventing biosynthesis of immune-mediating eicosanoids. This study identified PLA(2) inhibitors derived from culture broths of these two bacteria. Both X. nematophila and P. temperata subsp. temperata culture broths possessed significant PLA(2)-inhibitory activities. Fractionation of these bacterial metabolites in the culture broths using organic solvent and subsequent chromatography purified seven potent PLA(2) inhibitors, three of which (benzylideneacetone [BZA], proline-tyrosine [PY], and acetylated phenylalanine-glycine-valine [FGV]) were reported in a previous study. Four other compounds (indole, oxindole, cis-cyclo-PY, and p-hydroxyphenyl propionic acid) were identified and shown to significantly inhibit PLA(2). X. nematophila culture broth contained these seven compounds, while P. temperata subsp. temperata culture broth contained three compounds (BZA, acetylated FGV, and cis-cyclo-PY). BZA was detected in the largest amount among these PLA(2) compounds in both bacterial culture broths. All seven bacterial metabolites also showed significant inhibitory activities against immune responses, such as phenoloxidase activity and hemocytic nodulation; BZA was the most potent. Finally, this study characterized these seven compounds for their insecticidal activities against the diamondback moth, Plutella xylostella. Even though these compounds showed relatively low toxicities to larvae, they significantly enhanced the pathogenicity of Bacillus thuringiensis. This study reports bacterial-origin PLA(2) inhibitors, which would be applicable for developing novel insecticides.  相似文献   

8.
Phospholipase A2 (PLA2) catalytic activity was measured in aqueous extracts of 83 freeze-dried specimens representing 55 marine sponge species collected from the east coast of Australia including the Great Barrier Reef. High levels (>500 u/l) of PLA2 activity (defined as the amount of activity that releases 1 micromol of fatty acid per min) were found in four out of 55 species (7%), moderate activities (100-499 u/l) in 6/55 (11%), low activities (1-99 u/l) in 11/55 (20%) and no PLA2 activity in 34/55 (62%). Species with high PLA2 activity levels included Cymbastela coralliophila (2118 u/l, specific activity 10,590 u/g of protein), Acanthella cavernosa (1318 u/l, specific activity 2470 u/g), Spirastrella vagabunda (1036 u/l, specific activity 1727 u/g and Theonella swinhoei (567 u/l, specific activity 354 u/g). It was postulated that poriferan PLA2 may be involved in eicosanoid metabolism and antimicrobial and toxic defence of the animal.  相似文献   

9.
10.
Astrocytes comprise the major cell type in the central nervous system (CNS) and they are essential for support of neuronal functions by providing nutrients and regulating cell-to-cell communication. Astrocytes also are immune-like cells that become reactive in response to neuronal injury. Phospholipases A2 (PLA 2) are a family of ubiquitous enzymes that degrade membrane phospholipids and produce lipid mediators for regulating cellular functions. Three major classes of PLA 2 are expressed in astrocytes: group IV calcium-dependent cytosolic PLA 2 (cPLA2), group VI calcium-independent PLA 2 (iPLA2), and group II secretory PLA 2 (sPLA2). Upregulation of PLA 2 in reactive astrocytes has been shown to occur in a number of neurodegenerative diseases, including stroke and Alzheimer’s disease. This review focuses on describing the effects of oxidative stress, inflammation, and activation of G protein-coupled receptors on PLA 2 activation, arachidonic acid (AA) release, and production of prostanoids in astrocytes.  相似文献   

11.
Considerable progress has been made in characterizing the individual participant enzymes and their relative contributions in the generation of eicosanoids, lipid mediators derived from arachidonic acid, such as prostaglandins and leukotrienes. However, the role of individual phospholipase (PL) A(2) enzymes in providing arachidonic acid to the downstream enzymes for eicosanoid generation in biologic processes has not been fully elucidated. In this review, we will provide an overview of the classification of the families of PLA(2) enzymes, their putative mechanisms of action, and their role(s) in eicosanoid generation and inflammation.  相似文献   

12.
磷脂酶A2的应用   总被引:4,自引:0,他引:4  
磷脂酶A2 (phospholipaseA2 ,PLA2 ,EC 3 .1 .1 .4)即磷脂 2 酰基水解酶 ,是专一催化 3 Sn 磷酸甘油脂C 2位酯键的水解反应的酶 ,酶解产物为溶血磷脂和脂肪酸。PLA2 不仅在生物体内具有很重要的生理功能 ,而且具有很高的应用价值 ,可广泛地应用在科学研究、磷脂改性、油脂精练、饲料添加剂、医疗等诸多方面。1 .用PLA2 研究酶学、脂代谢和生物膜结构与功能PLA2 (尤其是外分泌型的PLA2 )的分子量较小 ,一般在 1 0~ 2 0kD之间 ,相对而言 ,结构较为简单。在蛇毒中 ,存在许多PLA2 的同工酶 ,它们之…  相似文献   

13.
Phospholipase A2 (PLA2) is an enzyme present in snake and other venoms and body fluids. We measured PLA2 catalytic activity in tissue homogenates of 22 species representing the classes Anthozoa, Hydrozoa, Scyphozoa and Cubozoa of the phylum Cnidaria. High PLA2 levels were found in the hydrozoan fire coral Millepora sp. (median 735 U/g protein) and the stony coral Pocillopora damicornis (693 U/g) that cause skin irritation upon contact. High levels of PLA2 activity were also found in the acontia of the sea anemone Adamsia carciniopados (293 U/g). Acontia are long threads containing nematocysts and are used in defense and aggression by the animal. Tentacles of scyphozoan and cubozoan species had high PLA2 activity levels: those of the multitentacled box jellyfish Chironex fleckeri contained 184 U/g PLA2 activity. The functions of cnidarian PLA2 may include roles in the capture and digestion of prey and defense of the animal. The current observations support the idea that cnidarian PLA2 may participate in the sting site irritation and systemic envenomation syndrome resulting from contact with cnidarians.  相似文献   

14.
Phospholipase A2 and small, dense low-density lipoprotein   总被引:10,自引:0,他引:10  
High levels of small, dense LDL in plasma are associated with increased risk for cardiovascular disease. There are some biochemical characteristics that may render small, dense LDL particles more atherogenic than larger, buoyant LDL particles. First, small, dense LDL particles contain less phospholipids and unesterified cholesterol in their surface monolayer than do large, buoyant LDL particles. This difference in lipid content appears to induce changes in the conformation of apolipoprotein B-100, leading to more exposure of proteoglycan-binding regions. This may be one reason for the high-affinity binding of small, dense LDL to arterial proteoglycans. Reduction of the phospholipid content in the surface monolayer LDL by treatment with secretory phospholipase A2 (sPLA2) forms small, dense LDL with an enhanced tendency to interact with proteoglycans. Circulating levels of sPLA2-IIA appears to be an independent risk factor for coronary artery disease and a predictor of cardiovascular events. In addition, in-vivo studies support the hypothesis that sPLA2 proteins contribute to atherogenesis and its clinical consequences. These data suggest that modification of LDL by sPLA2 in the arterial tissue or in plasma may be a mechanism for the generation of atherogenic lipoprotein particles in vivo, with a high tendency to be entrapped in the arterial extracellular matrix.  相似文献   

15.
16.
Phospholipase A(2) isoforms: a perspective   总被引:7,自引:0,他引:7  
Several new PLA(2)s have been identified based on their nucleotide gene sequences. They were classified mainly into three groups: cytosolic PLA(2) (cPLA(2)), secretary PLA(2) (sPLA(2)), and intracellular PLA(2) (iPLA(2)). They differ from each other in terms of substrate specificity, Ca(2+) requirement and lipid modification. The questions that still remain to be addressed are the subcellular localization and differential regulation of the isoforms in various cell types and under different physiological conditions. It is required to identify the downstream events that occur upon PLA(2) activation, particularly target protein or metabolic pathway for liberated arachidonic acid or other fatty acids. Understanding the same will greatly help in the development of potent and specific pharmacological modulators that can be used for basic research and clinical applications.The information of the human and other genomes of PLA(2)s, combined with the use of proteomics and genetically manipulated mouse models of different diseases, will illuminate us about the specific and potentially overlapping roles of individual phospholipases as mediators of physiological and pathological processes. Hopefully, such understanding will enable the development of specific agents aimed at decreasing the potential contribution of individual secretary phospholipases to vascular diseases.The signaling cascades involved in the activation of cPLA(2) by mitogen activated protein kinases (MAPKs) is now evident. It has been demonstrated that p44 MAPK phosphorylates cPLA(2) and increases its activity in cells and tissues. The phosphorylation of cPLA(2) at ser505 occurs before the increase in intracellular Ca(2+) that facilitate the binding of the lipid binding domain of cPLA(2) to phospholipids, promoting its translocation to cellular membranes and AA release. Recently, a negative feed back loop for cPLA(2) activation by MAPK has been proposed. If PLA(2) activation in a given model depends on PKC, PKA, cAMP, or MAPK then inhibition of these phosphorylating enzymes may alter activities of PLA(2) isoforms during cellular injury. Understanding the signaling pathways involved in the activation/deactivation of PLA(2) during cellular injury will point to key events that can be used to prevent the cellular injury. Furthermore, to date, there is limited information available regarding the regulation of iPLA(2) or sPLA(2) by these pathways.  相似文献   

17.
Phospholipase A2 activity was shown indirectly in T-lymphocytes from rat thymus and a permanent T-cell line by the liberation of arachidonic acid from phospholipids. In addition, phospholipase A2 activity was measured directly with two different substrates, phosphatidylcholine and labelled E. coli.  相似文献   

18.
The phospholipase A2-like catalytic antibody 13C2-1F6 was elicited against the hapten 1 as the transition state analog for the hydrolysis of the C2 ester in the phospholipid. The Michaelis-Menten kinetics for the hydrolysis of the phospholipid 2 by 13C2-1F6 afforded a kcat of 1.0 x 10(-2) min(-1) and aKm of 71 microM. This antibody hydrolyzes the C2 ester in (R)-2, regio- and enantioselectively.  相似文献   

19.
Protoplasts prepared from Bacillus subtilis by lysozyme digestion lysed in the presence of pure pancreatic phospholipase A(2). The phospholipids cardiolipin, phosphatidylethanolamine, phosphatidylglycerol and lysylphosphatidylglycerol, which are present in the membrane, are degraded by phospholipase A(2) only after removal of the cell wall, giving free fatty acids and lyso derivatives. The four phospholipids are hydrolyzed equally well at a given enzyme concentration. Differences in the phospholipid composition of the protoplasts were obtained by variations in the growth medium, time of harvesting, and preincubation time with lysozyme. The extent of hydrolysis appeared to depend on the initial phospholipid composition. A relative increase in acidic phospholipids in the membrane facilitated the action of phospholipase A(2), whereas the rate of hydrolysis was diminished when protoplasts were tested which contained a relatively high amount of positively charged phospholipid. Pure phospholipase C from B. cereus preferentially hydrolyzed phosphatidyl-ethanolamine in the B. subtilis membrane. More than 80% of this phospholipid was converted into diglyceride, whereas only 30% of the cardiolipin was hydrolyzed. Such a loss of phospholipids, however, was not followed by lysis of the protoplasts. Liposomes were prepared from the lipid extracts of B. subtilis and incubated with both phospholipases. The hydrolysis pattern of the phospholipids in these model membrane systems was identical to the hydrolysis pattern of the phospholipids in the protoplast membrane. Phospholipase A(2) hydrolyzed all the phospholipids in the liposomes equally well, whereas phospholipase C preferentially degraded phosphatidylethanolamine.  相似文献   

20.
Phospholipase A2 in the presence of Ca2+ was stimulated by calmodulin and by prostaglandin F2 alpha. Prostaglandin E2, cyclic-AMP and cyclic-GMP inhibited phospholipase A2 in the presence or absence of calmodulin. Dimethylsuberimidate cross-linking of phospholipase A2 with calmodulin was found to be Ca2+ dependent. These results indicate that phospholipase A2 is directly regulated by a host of key intracellular regulators and is one of the calmodulin-regulated enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号