首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of alphabeta and gammadelta T cells depends on productive rearrangement of the appropriate TCR genes and their subsequent expression as proteins. TCRbeta and TCRgammadelta proteins first appear in DN3 and DN4 thymocytes, respectively. So far, it is not clear whether this is due to a delayed expression of TCRgammadelta proteins or to a more rapid progression to DN4 of thymocytes expressing TCRgammadelta. The answer to this question bears on the distinction between instructive and stochastic models of alphabeta/gammadelta lineage decision. To study this question, we first monitored initial TCR protein expression in wild-type and TCR transgenic mice in reaggregate thymic organ cultures. A TCRbeta transgene was expressed in nearly all DN3 and DN4 cells, accelerated DN3 to DN4 transition, and strongly diminished the number of cells that express TCRgammadelta proteins. In contrast, TCRgammadelta transgenes were expressed only in a fraction of DN4 cells, did not accelerate DN3 to DN4 transition, and did not reduce the number of DN4 cells expressing TCRbeta proteins. The TCRbeta transgene partially inhibited endogenous TCRgamma rearrangements, whereas the TCRgammadelta transgenes did not inhibit endogenous TCRbeta rearrangements. Second, we analyzed frequencies of productive TCRbeta and TCRgammadelta V(D)J junctions in DN3 and DN4 subsets. Most importantly, frequencies of productive TCRgammadelta rearrangements (Vdelta5, Vgamma1.1, and Vgamma2) appeared unselected in DN3. The results suggest a late and restricted expression of the corresponding gammadeltaTCR, severely limiting their putative instructional opportunities in alphabeta/gammadelta divergence.  相似文献   

2.
3.
The TCRbeta chain constant domain contains an unusually elongated, solvent-exposed FG loop. This structural element forms one component of an alphabeta TCR cavity against which CD3epsilongamma may abut to facilitate Ag-specific signaling. Consistent with this notion, in the present study we show that N15alphabeta TCR transfectants expressing a FG loop-deleted chain (betaDeltaFG) stimulate less tyrosine protein phosphorylation than those bearing a wild-type beta-chain (betawt) upon TCR cross-linking. Furthermore, coimmunoprecipitation studies suggest a weakened association between the CD3epsilongamma heterodimer and the beta-chain in TCR complexes containing the betaDeltaFG variant. To further investigate the biologic role of the Cbeta FG loop in development, we competitively reconstituted the thymus of Ly5 congenic or RAG-2-/- mice using bone marrow cells from betawt or betaDeltaFG transgenic C57BL/6 (B6) mice. Both betawt and betaDeltaFG precursor cells generate thymocytes representative of all maturational stages. However, betaDeltaFG-expressing thymocytes dominate during subsequent development, resulting in an excess of betaDeltaFG-expressing peripheral T cells with reduced proliferative and cytokine production abilities upon TCR stimulation. Collectively, our results show that the unique Cbeta FG loop appendage primarily controls alphabeta T cell development through selection processes.  相似文献   

4.
Development of the alphabeta and gammadelta T cell lineages is dependent upon the rearrangement and expression of the TCRalpha and beta or gamma and delta genes, respectively. Although the timing and sequence of rearrangements of the TCRalpha and TCRbeta loci in adult murine thymic precursors has been characterized, no similar information is available for the TCRgamma and TCRdelta loci. In this report, we show that approximately half of the total TCRdelta alleles initiate rearrangements at the CD44highCD25+ stage, whereas the TCRbeta locus is mainly in germline configuration. In the subsequent CD44lowCD25+ stage, most TCRdelta alleles are fully recombined, whereas TCRbeta rearrangements are only complete on 10-30% of alleles. These results indicate that rearrangement at the TCRdelta locus can precede that of TCRbeta locus recombination by one developmental stage. In addition, we find a bias toward productive rearrangements of both TCRdelta and TCRgamma genes among CD44highCD25+ thymocytes, suggesting that functional gammadelta TCR complexes can be formed before the rearrangement of TCRbeta. These data support a model of lineage commitment in which sequential TCR gene rearrangements may influence alphabeta/gammadelta lineage decisions. Further, because TCR gene rearrangements are generally limited to T lineage cells, these analyses provide molecular evidence that irreversible commitment to the T lineage can occur as early as the CD44highCD25+ stage of development.  相似文献   

5.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

6.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

7.
To evaluate the role of the TCR in the alphabeta/gammadelta lineage choice during human thymocyte development, molecular analyses of the TCRbeta locus in gammadelta cells and the TCRgamma and delta loci in alphabeta cells were undertaken. TCRbeta variable gene segments remained largely in germline configuration in gammadelta cells, indicating that commitment to the gammadelta lineage occurred before complete TCRbeta rearrangements in most cases. The few TCRbeta rearrangements detected were primarily out-of-frame, suggesting that productive TCRbeta rearrangements diverted cells away from the gammadelta lineage. In contrast, in alphabeta cells, the TCRgamma locus was almost completely rearranged with a random productivity profile; the TCRdelta locus contained primarily nonproductive rearrangements. Productive gamma rearrangements were, however, depleted compared with preselected cells. Productive TCRgamma and delta rearrangements rarely occurred in the same cell, suggesting that alphabeta cells developed from cells unable to produce a functional gammadelta TCR. Intracellular TCRbeta expression correlated with the up-regulation of CD4 and concomitant down-regulation of CD34, and plateaued at the early double positive stage. Surprisingly, however, some early double positive thymocytes retained gammadelta potential in culture. We present a model for human thymopoiesis which includes gammadelta development as a default pathway, an instructional role for the TCR in the alphabeta/gammadelta lineage choice, and a prolonged developmental window for beta selection and gammadelta lineage commitment. Aspects that differ from the mouse are the status of TCR gene rearrangements at the nonexpressed loci, the timing of beta selection, and maintenance of gammadelta potential through the early double positive stage of development.  相似文献   

8.
9.
During alphabeta T cell development, CD4(-)CD8(-) thymocytes first express pre-TCR (pTalpha/TCR-beta) before their differentiation to the CD4(+)CD8(+) stage. Positive selection of self-tolerant T cells is then determined by the alphabeta TCR expressed on CD4(+)CD8(+) thymocytes. Conceivably, an overlap in surface expression of these two receptors would interfere with the delicate balance of thymic selection. Therefore, a mechanism ensuring the sequential expression of pre-TCR and TCR must function during thymocyte development. In support of this notion, we demonstrate that expression of TCR-alpha by immature thymocytes terminates the surface expression of pre-TCR. Our results reveal that expression of TCR-alpha precludes the formation of pTalpha/TCR-beta dimers within the endoplasmic reticulum, leading to the displacement of pre-TCR from the cell surface. These findings illustrate a novel posttranslational mechanism for the regulation of pre-TCR expression, which may ensure that alphabeta TCR expression on thymocytes undergoing selection is not compromised by the expression of pre-TCR.  相似文献   

10.
alphabeta T cell development in the thymus is dependent on signaling through the TCR. The first of these signals is mediated by the pre-TCR, which is responsible for promoting pre-T cell proliferation and the differentiation of CD4(-)8(-)3(-) (DN) thymocytes into CD4(+)8(+)3(+) (DP) cells. In many cases, T cell signaling proteins known to be essential for TCR signaling in mature T cells are also required for pre-TCR signaling in DN thymocytes. Therefore, it came as a surprise to discover that mice lacking the Tec kinases Itk and Rlk, enzymes required for efficient activation of phospholipase C-gamma1 in mature T cells, showed no obvious defects in pre-TCR-dependent selection events in the thymus. In this report, we demonstrate that DN thymocytes lacking Itk, or Itk and Rlk, are impaired in their ability to generate normal numbers of DP thymocytes, especially when placed in direct competition with WT DN thymocytes. We also show that Itk is required for maximal pre-TCR signaling in DN thymocytes. These data demonstrate that the Tec kinases Itk and Rlk are involved in, but are not essential for, pre-TCR signaling in the thymus, suggesting that there is an alternative mechanism for activating phospholipase C-gamma1 in DN thymocytes that is not operating in DP thymocytes and mature T cells.  相似文献   

11.
We have characterized CD4-CD8- double negative (DN) thymocytes that express TCR-alpha beta and represent a minor thymocyte subpopulation expressing a markedly skewed TCR repertoire. We found that DN TCR-alpha beta + thymocytes resemble mature T cells in that they (a) are phenotypically CD2hiCD5hiQa2+HSA-, (b) appear late in ontogeny, and (c) are susceptible to cyclosporin A-induced maturation arrest. In addition, we found that DNA sequences 5' to the CD8 alpha gene were demethylated relative to their germline state, suggesting that DN TCR-alpha beta + thymocytes are derived from cells that had at one time expressed their CD8 alpha gene locus. Because DN TCR-alpha beta + thymocytes are known to express an unusual TCR repertoire with significant overexpression of V beta 8, we were interested in examining the possible role played by self-Ag in shaping their TCR repertoire. It has been suggested that DN TCR-alpha beta + thymocytes are derived from potentially self-reactive thymocytes that have escaped clonal deletion by down-regulating their surface expression of CD4 and/or CD8 determinants. However, apparently inconsistent with such an hypothesis, we found that the frequency of DN thymocytes expressing various anti-self TCR (V beta 6, V beta 8.1, V beta 11, V beta 17a) were not increased in strains expressing their putative self-Ag, but instead were either unaffected or significantly reduced in those strains. With regard to V beta 8 expression among DN TCR-alpha beta + thymocytes, V beta 8 overexpression in DN TCR-alpha beta + thymocytes appeared to be independent of, and superimposed on, the developmental appearance of the basic DN thymocyte repertoire. Even though V beta 8 overexpression appeared to be generated by a mechanism distinct from that generating the rest of the DN TCR-alpha beta + thymocyte repertoire, we found that super-Ag against which V beta 8 TCR react introduced into the neonatal differentiation environment also significantly reduced, rather than increased, the frequency of DN TCR-alpha beta + V beta 8+ thymocytes. Thus, the present study is consistent with DN TCR-alpha beta + thymocytes being mature cells derived from CD8+ precursors, and documents that their TCR repertoire can be influenced, at least negatively, by either self-Ag or Ag introduced into the neonatal differentiation environment. However, we found no evidence to support the hypothesis that DN TCR-alpha beta + thymocytes are enriched in cells expressing TCR reactive against self-Ag.  相似文献   

12.
The TCR delta- and alpha-chain genes lie in a single complex locus, the TCRalpha/delta locus. TCRdelta-chain genes are assembled in CD4(-)CD8(-) (double negative (DN)) thymocytes and TCRalpha-chain genes are assembled in CD4(+)CD8(+) (double positive) thymocytes due, in part, to the developmental stage-specific activities of the TCRdelta and TCRalpha enhancers (Edelta and Ealpha), respectively. Edelta functions with TCRdelta promoters to mediate TCRdelta-chain gene assembly in DN thymocytes. However, Edelta is unable to function with TCRalpha promoters such as the TEA promoter to drive TCRalpha-chain gene assembly in these cells. This is important, because the premature assembly of TCRalpha-chain genes in DN thymocytes would disrupt alphabeta and gammadelta T cell development. The basis for TEA inactivity in DN thymocytes is unclear, because Edelta can activate the Vdelta5 gene segment promoter that lies only 4 kb upstream of TEA promoter. In this study, we use gene targeting to construct a modified TCRalpha/delta locus (TCRalpha/delta(5DeltaT)) in which the TEA promoter lies in the same location as the Vdelta5 gene segment on the wild-type TCRalpha/delta allele. Remarkably, the TEA promoter on this allele exhibits normal developmental stage-specific regulation, being active in double positive thymocytes but not in DN thymocytes as is the case with the Vdelta5 promoter. Thus, the inactivity of the TEA promoter in DN thymocytes is due primarily to intrinsic developmental stage-specific features of the promoter itself and not to its location relative to other cis-acting elements in the locus, such as Edelta.  相似文献   

13.
14.
15.
16.
The sequence of activation signals that stimulate proliferation, differentiation, and selection of mature T cell subsets from immature, dull-CD5+/CD4-, CD8- double negative (bCD5), (dCD5/DN) thymocytes are still unclear. However, it is likely that cytokines play integral roles in these events. Here we report that IL-1, in the presence of Con A, supports the proliferation and differentiation of highly purified dCD5/DN precursors into bright-CD5+ DN, CD2- lymphocytes with an apparently mature phenotype. These cells express CD3 and preferentially express the products of two TCR gene families, V beta 8 and V beta 6, whose expression is dependent on the allelic expression of the Mls-1 locus. Experiments, using DN thymocytes mixed with purified dCD5 subset of DN cells from a congenic strain of mice (i.e., expressing two different alleles of CD5) have shown that the cells that are stimulated by IL-1 and comitogen are derived from the immature dCD5 subset and not from the mature bCD5 cells contained within the DN subset. In contrast, IL-2 with the co-mitogen stimulates three- to fourfold higher levels of proliferation, from the same purified immature precursor population, and nearly a twofold increase in cell yield. However, the cells that were generated from precursor thymic cells stimulated with IL-2 represent a completely different T cell subset compared to IL-1-generated cells; these IL-2-stimulated cells express comparable levels of CD3, but also express substantial levels of CD2 and the TCR-gamma/delta, and a subset expresses CD8. These data suggest that these two TCR-alpha/beta and TCR-gamma/delta subsets of mature thymocytes use different cytokines and therefore possibly different stromal interactions to initiate differentiation.  相似文献   

17.
Thy-1(dull) gammadelta T cells constitute a distinct adult gammadelta T cell subset characterized by the expression of a TCR composed of Vgamma1Cgamma4 and Vdelta6Cdelta chains with limited junctional sequence diversity. However, several features of the expressed Thy-1(dull) TCR-gammadelta genes, in particular the absence or minimal presence of N region diversity and the almost invariable Ddelta2-Jdelta1 junction, are typical of rearrangements often found in the fetal thymus. In this study, we have investigated the origin of these cells. Few Thy-1(dull) gammadelta thymocytes developed in syngeneic radiation adult chimeras, regardless of whether the recipient mice were given adult bone marrow or fetal liver cells as a source of hemopoietic precursors. In contrast, normal numbers of Thy-1(dull) gammadelta T cells developed in fetal thymi grafted into adult syngeneic recipients. Interestingly, the majority of Thy-1(dull) gammadelta thymocytes present in the grafts were of graft origin, even when most conventional gammadelta and alphabeta thymocytes in the grafted thymi originated from T cell precursors of recipient origin. Single-cell PCR analyses of the nonselected TCR-gamma rearrangements present in adult Thy-1(dull) gammadelta thymocytes revealed that more than one-half of these cells represent the progenies of a limited number of clones that greatly expanded possibly during the first weeks of life. Finally, the second TCR-delta allele of a large number of Thy-1(dull) gammadelta T cells contained incomplete TCR-delta rearrangements, thus providing an explanation for the adult-type rearrangements previously found among nonfunctional V(D)J rearrangements present in Thy-1(dull) gammadelta thymocytes.  相似文献   

18.
Programmed death receptor 1 (PD-1) is expressed on thymocytes in addition to activated lymphocyte cells. Its ligation is thought to negatively regulate T cell activation, and PD-1(-/-) mice develop autoimmunity. To study the role of PD-1 on the development and function of a monoclonal CD8(+) T cell population, 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice were generated. Unexpectedly, approximately 30% of peripheral T cells in these mice were CD4/CD8 double negative (DN). Although the DN cells were not activated by Ag-expressing APCs, they functioned normally in response to anti-CD3/anti-CD28. These cells had a naive surface phenotype and lacked expression of NK1.1, B220, and gammadelta TCR; and the majority did not up-regulate CD8alphaalpha expression upon activation, arguing that they are not predominantly diverted gammadelta-lineage cells. The thymus was studied in detail to infer the mechanism of generation of DN peripheral T cells. Total thymus cellularity was reduced in 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice, and a relative increase in DN cells and decrease in double-positive (DP) cells were observed. Increased annexin V(+) cells among the DP population argued for augmented negative selection in PD-1(-/-) mice. In addition, an increased fraction of the DN thymocytes was HSA negative, suggesting that they had undergone positive selection. This possibility was supported by decreased emergence of DN PD-1(-/-) 2C cells in H-2(k) bone marrow chimera recipients. Our results are consistent with a model in which absence of PD-1 leads to greater negative selection of strongly interacting DP cells as well as increased emergence of DN alphabeta peripheral T cells.  相似文献   

19.
Bcl11b(-/-) mice show developmental arrest at the CD44(-)CD25(+) double-negative 3 (DN3) or immature CD8(+)single-positive stage of alphabeta T cell. We have performed detailed analysis of sorted subsets of Bcl11b(-/-) thymocytes, DN3 and CD44(-)CD25(-) double-negative 4 (DN4) cells. Surface expression of TCRbeta proteins was not detected in DN3 thymocytes and markedly reduced in DN4 thymocytes, whereas expression within the cell was detected in both, suggesting some impairment in processing of TCRbeta proteins from the cytoplasm to the cell surface. This lack of expression, resulting in the absence of pre-TCR signaling, could be responsible for the arrest, but the transgenic TCRbeta or TCRalphabeta expression on the cell surface failed to promote transition from the DN3 to CD4(+)CD8(+) double-positive stage of development. This suggests that the pre-TCR signal cannot compensate the deficiency of Bcl11b for development. Bcl11b(-/-) DN3 thymocytes showed normal DNA rearrangements between Dbeta and Jbeta segments but limited DNA rearrangements between Vbeta and DJbeta without effect of distal or proximal positions. Because this impairment may be due to chromatin accessibility, we have examined histone H3 acetylation in Bcl11b(-/-) DN3 cells using chromatin immunoprecipitation assay. No change was observed in acetylation at the Vbeta and Dbeta gene locus. Analysis of Bcl11b(-/-) DN4 thymocytes showed apoptosis, accompanied with lower expression of anti-apoptotic proteins, Bcl-x(L) and Bcl-2, than wild-type DN4 thymocytes. Interestingly, the transgenic TCRalphabeta in those cells reduced apoptosis and raised their protein expression without increased cellularity. These results suggest that Bcl11b deficiency affects many different signaling pathways leading to development arrests.  相似文献   

20.
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号