首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell–cell adhesion and integrin–extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFβ-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.  相似文献   

2.
The effect of the suppression of expression of the actin-binding protein caldesmon on the motility of nonmuscle cells has been studied. A more than a fivefold decrease in the content of this protein in cells by RNA interference led to the disturbance of the formation of actin stress fibers and acceleration of cell migration to the zone of injury of the monolayer. A stimulation of stationary cells by serum induced more than 1,5-fold accumulation of stress fibers only in control cells, but not in caldesmon-deficient cells. Similarly, the accumulation of actin filaments was observed in actively migrating cells of only wild type, but not in the cells with low caldesmon content. These changes occurred mainly at the leading edge of the migrating cell where the distinct structure of actin filaments was not seen in the absence of caldesmon. It was assumed that caldesmon inhibits cell migration due to the stabilization of actin in filaments and a decrease in the dynamics of monomeric actin at the leading edge of the migrating cell.  相似文献   

3.
4.
The alpha 6 beta 4 integrin and epithelial cell migration.   总被引:1,自引:0,他引:1  
Although the involvement of alpha 6 beta 4, an integrin laminin receptor, in hemidesmosome organization has dominated the study of this integrin, recent studies are revealing novel functions for alpha 6 beta 4 in the migration of epithelial and carcinoma cells. The engagement of laminin by alpha 6 beta 4 can stabilize actin-rich protrusions and mediate traction forces necessary for cell movement. This integrin also has a significant impact on signaling molecules that stimulate migration and invasion, especially PI3-K and Rho GTPases. Activation of PI3-K by alpha 6 beta 4 enhances the formation of actin protrusions, and it may stimulate the function of other integrins, such as alpha 3 beta 1, that are also important for epithelial migration. Signaling through alpha 6 beta 4 may not always depend on the adhesive functions of this integrin, a possibility that has profound implications for migration and invasion because it implies that the ability of alpha 6 beta 4 to stimulate these processes is not limited to specific matrix environments.  相似文献   

5.
T lymphocytes use LFA-1 to migrate into lymph nodes and inflammatory sites. To investigate the mechanisms regulating this migration, we utilize mAbs selective for conformational epitopes as probes for active LFA-1. Expression of the KIM127 epitope, but not the 24 epitope, defines the extended conformation of LFA-1, which has intermediate affinity for ligand ICAM-1. A key finding is that KIM127-positive LFA-1 forms new adhesions at the T lymphocyte leading edge. This LFA-1 links to the cytoskeleton through alpha-actinin-1 and disruption at the level of integrin or actin results in loss of cell spreading and migratory speed due to a failure of attachment at the leading edge. The KIM127 pattern contrasts with high-affinity LFA-1 that expresses both 24 and KIM127 epitopes, is restricted to the mid-cell focal zone and controls ICAM-1 attachment. Identification of distinctive roles for intermediate- and high-affinity LFA-1 in T lymphocyte migration provides a biological function for two active conformations of this integrin for the first time.  相似文献   

6.
Shiga toxins (Stx), released into the intestinal lumen by enterohemorrhagic Escherichia coli (EHEC), are major virulence factors responsible for gastrointestinal and systemic illnesses. These pathologies are believed to be due to the action of the toxins on endothelial cells, which express the Stx receptor, the glycosphingolipid Gb3. To reach the endothelial cells, Stx must translocate across the intestinal epithelial monolayer. This process is poorly understood. We investigated Stx1 movement across the intestinal epithelial T84 cell model and the role of actin turnover in this transcytosis. We showed that changes in the actin cytoskeleton due to latrunculin B, but not cytochalasin D or jasplakinolide, significantly facilitate toxin transcytosis across T84 monolayers. This trafficking is transcellular and completely inhibited by tannic acid, a cell impermeable plasma membrane fixative. This indicates that actin turnover could play an important role in Stx1 transcellular transcytosis across intestinal epithelium in vitro. Since EHEC attachment to epithelial cells causes an actin rearrangement, this finding may be highly relevant to Stx-induced disease.  相似文献   

7.
Reelin binds alpha3beta1 integrin and inhibits neuronal migration   总被引:23,自引:0,他引:23  
Mice that are mutant for Reelin or Dab1, or doubly mutant for the VLDL receptor (VLDLR) and ApoE receptor 2 (ApoER2), show disorders of cerebral cortical lamination. How Reelin and its receptors regulate laminar organization of cerebral cortex is unknown. We show that Reelin inhibits migration of cortical neurons and enables detachment of neurons from radial glia. Recombinant and native Reelin associate with alpha3beta1 integrin, which regulates neuron-glia interactions and is required to achieve proper laminar organization. The effect of Reelin on cortical neuronal migration in vitro and in vivo depends on interactions between Reelin and alpha3beta1 integrin. Absence of alpha3beta1 leads to a reduction of Dab1, a signaling protein acting downstream of Reelin. Thus, Reelin may arrest neuronal migration and promote normal cortical lamination by binding alpha3beta1 integrin and modulating integrin-mediated cellular adhesion.  相似文献   

8.
Plexins are cell surface receptors for semaphorins and regulate cell migration in many cell types. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 functions as a GTPase-activating protein (GAP) for R-Ras, a member of Ras family GTPases implicated in regulation of integrin activity and cell migration. We characterized the role of R-Ras downstream of Sema4D/Plexin-B1 in cell migration. Activation of Plexin-B1 by Sema4D suppressed the ECM-dependent R-Ras activation, R-Ras-mediated phosphatydylinositol 3-kinase activation, and beta(1) integrin activation through its R-Ras GAP domain, leading to inhibition of cell migration. In addition, inactivation of R-Ras by overexpression of the R-Ras-specific GAP or knockdown of R-Ras by RNA interference was sufficient for suppressing beta(1) integrin activation and cell migration in response to the ECM stimulation. Thus, we conclude that R-Ras activity is critical for ECM-mediated beta(1) integrin activation and cell migration and that inactivation of R-Ras by Sema4D/Plexin-B1-mediated R-Ras GAP activity controls cell migration by modulating the activity of beta(1) integrins.  相似文献   

9.
10.
Components of intracellular signaling that mediate the stimulation-dependent recycling of integrins are being identified, but key transport effectors that are the ultimate downstream targets remain unknown. ACAP1 has been shown recently to function as a transport effector in the cargo sorting of transferrin receptor (TfR) that undergoes constitutive recycling. We now show that ACAP1 also participates in the regulated recycling of integrin beta1 to control cell migration. However, in contrast to TfR recycling, the role of ACAP1 in beta1 recycling requires its phosphorylation by Akt, which is, in turn, regulated by a canonical signaling pathway. Disrupting the activities of either ACAP1 or Akt, or their assembly with endosomal beta1, inhibits beta1 recycling and cell migration. These findings advance an understanding of how integrin recycling is achieved during cell migration, and also address a basic issue of how intracellular signaling can interface with transport to achieve regulated recycling.  相似文献   

11.
Necrotizing enterocolitis (NEC) is associated with the release of interferon-gamma (IFN) by enterocytes and delayed intestinal restitution. Our laboratory has recently demonstrated that IFN inhibits enterocyte migration by impairing enterocyte gap junctions, intercellular channels that are composed of connexin43 (Cx43) monomers and that are required for enterocyte migration to occur. The mechanisms by which IFN inhibits gap junctions are incompletely understood. Lipid rafts are cholesterol-sphingolipid-rich microdomains of the plasma membrane that play a central role in the trafficking and signaling of various proteins. We now hypothesize that Cx43 is present on enterocyte lipid rafts and that IFN inhibits enterocyte migration by displacing Cx43 from lipid rafts in enterocytes. We now confirm our previous observations that intestinal restitution is impaired in NEC and demonstrate that Cx43 is present on lipid rafts in IEC-6 enterocytes. We show that lipid rafts are required for enterocyte migration, that IFN displaces Cx43 from lipid rafts, and that the phorbol ester phorbol 12-myristate 13-acetate (PMA) restores Cx43 to lipid rafts after treatment with IFN in a protein kinase C-dependent manner. IFN also reversibly decreased the phosphorylation of Cx43 on lipid rafts, which was restored by PMA. Strikingly, restoration of Cx43 to lipid rafts by PMA or by transfection of enterocytes with adenoviruses expressing wild-type Cx43 but not mutant Cx43 is associated with the restoration of enterocyte migration after IFN treatment. Taken together, these findings suggest an important role for lipid raft-Cx43 interactions in the regulation of enterocyte migration during exposure to IFN, such as NEC.  相似文献   

12.
Wounding of the epidermis signals the transition of keratinocytes from quiescent anchorage on endogenous basement membrane laminin 5 to migration on exposed dermal collagen. In this study, we attempt to characterize activation signals that transform quiescent keratinocytes into migratory leading cells at the wound edge. Previously, we reported that adhesion and spreading on collagen via integrin alpha(2)beta(1) by cultured human foreskin keratinocytes (HFKs) requires RhoGTP, a regulator of actin stress fibers. In contrast, adhesion and spreading on laminin 5 requires integrins alpha(3)beta(1) and alpha(6)beta(4) and is dependent on phosphoinositide 3-hydroxykinase (Nguyen, B. P., Gil, S. G., and Carter, W. G. (2000) J. Biol. Chem. 275, 31896-31907). Here, we report that quiescent HFKs do not adhere to collagen but adhere and spread on laminin 5. By using collagen adhesion as one criterion for conversion to a "leading wound cell," we found that activation of collagen adhesion requires elevation of RhoGTP. Adhesion of quiescent HFKs to laminin 5 via integrin alpha(3)beta(1) and alpha(6)beta(4) is sufficient to increase levels of RhoGTP required for adhesion and spreading on collagen. Consistently, adhesion of quiescent HFKs to laminin 5, but not collagen, also promotes expression of the precursor form of laminin 5, a characteristic of leading keratinocytes in the epidermal outgrowth. We suggest that wounding of quiescent epidermis initiates adhesion and spreading of keratinocytes at the wound edge on endogenous basement membrane laminin 5 via alpha(3)beta(1) and alpha(6)beta(4) in a Rho-independent mechanism. Spreading on endogenous laminin 5 via alpha(3)beta(1) is necessary but not sufficient to elevate expression of precursor laminin 5 and RhoGTP, allowing for subsequent collagen adhesion via alpha(2)beta(1), all characteristics of leading keratinocytes in the epidermal outgrowth.  相似文献   

13.
Transendothelial migration (TEM) is a tightly regulated process whereby leukocytes migrate from the vasculature into tissues. Rho guanosine triphosphatases (GTPases) are implicated in TEM, but the contributions of individual Rho family members are not known. In this study, we use an RNA interference screen to identify which Rho GTPases affect T cell TEM and demonstrate that RhoA is critical for this process. RhoA depletion leads to loss of migratory polarity; cells lack both leading edge and uropod structures and, instead, have stable narrow protrusions with delocalized protrusions and contractions. By imaging a RhoA activity biosensor in transmigrating T cells, we find that RhoA is locally and dynamically activated at the leading edge, where its activation precedes both extension and retraction events, and in the uropod, where it is associated with ROCK-mediated contraction. The Rho guanine nucleotide exchange factor (GEF) GEF-H1 contributes to uropod contraction but does not affect the leading edge. Our data indicate that RhoA activity is dynamically regulated at the front and back of T cells to coordinate TEM.  相似文献   

14.
In cancer and angiogenesis, coagulation-independent roles of tissue factor (TF) in cell migration are incompletely understood. Immobilized anti-TF extracellular domain antibodies induce cell spreading, but this phenomenon is epitope specific and is not induced by anti-TF 5G9. Spreading on anti-TF is beta1 integrin-dependent, indicating functional interactions of the TF extracellular domain 5G9 epitope (a presumed integrin-binding site) and integrins. Recombinant TF extracellular domain supports adhesion of cells expressing alphavbeta3 or certain beta1 integrin heterodimers (alpha3beta1, alpha4beta1, alpha5beta1, alpha6beta1, alpha9beta1) and adhesion is blocked by specific anti-integrin antibodies or mutations in the integrin ligand-binding site. Although several studies have linked TF to cell migration, we here demonstrate that TF specifically regulates alpha3beta1-dependent migration on laminin 5. Expression of TF suppresses alpha3beta1-dependent migration, but only when the TF cytoplasmic domain is not phosphorylated. Suppression of migration can be reversed by 5G9, presumably by disrupting integrin interaction, or by the protease ligand VIIa, known to induce PAR-2-dependent phosphorylation of TF. In both cases, release of alpha3beta1 inhibition is prevented by mutation of critical phosphorylation sites in the TF cytoplasmic domain. Thus, TF influences integrin-mediated migration through cooperative intra- and extracellular interactions and phosphorylation regulates TF's function in cell motility.  相似文献   

15.
The role of integrin-mediated signaling events in T cell function remains incompletely characterized. We report here that alpha4beta1 integrin stimulation of H9 T cells and normal human T cell blasts results in rapid and transient tyrosine phosphorylation of the adapter protein, SH2 domain-containing 76-kDa protein (SLP-76)-associated phosphoprotein of 130 kDa (SLAP-130)/FYB at levels comparable to those observed following TCR stimulation. Stimulation of T cells via the alpha4beta1 integrin enhances the association of tyrosine phosphorylated SLAP-130/FYB with the SH2 domain of the src tyrosine kinase p59fyn. Activation of normal T cells, but not H9 T cells, via alpha4beta1 leads to tyrosine phosphorylation of SLP-76 as well as SLAP-130/FYB. Overexpression of SLAP-130/FYB in normal T cells enhances T cell migration through fibronectin-coated filters in response to the chemokine stromal cell-derived factor (SDF)-1alpha. These results identify SLAP-130/FYB as a new tyrosine phosphorylated substrate in beta1 integrin signaling and suggest a novel function for SLAP-130/FYB in regulating T lymphocyte motility.  相似文献   

16.
Intracellular signaling events at the leading edge of migrating cells   总被引:4,自引:0,他引:4  
Cell migration is an important facet of the life cycle of immune and other cell types. A complex set of events must take place at the leading edge of motile cells before these cells can migrate. Chemokines induce the motility of various cell types by activating multiple intracellular signaling pathways. These include the activation of chemokine receptors, which are coupled to the heterotrimeric G proteins. The release of G beta gamma subunits from chemokine receptors results in the recruitment to the plasma membrane, with subsequent activation of various down-stream signaling molecules. Among these molecules are the pleckstrin homology domain-containing proteins and the phosphoinositide 3-kinase gamma which phosphorylates phospholipids and activates members of the GTP exchange factors (GEFs). These GEFs facilitate the exchange of GTP for GDP in members of GTPases. The latter are important for reorganizing the cell cytoskeleton, and in inducing chemotaxis. Chemokines also induce the mobilization of intracellular calcium from intracellular stores. Second messengers such as inositol 1,4,5 trisphosphate, and cyclic adenosine diphosphate ribose are among those induced by chemokines. In addition, the G beta gamma subunits recruit members of the G protein-coupled receptor kinases, which phosphorylate chemokine receptors, resulting in desensitization and termination of the motility signals. This review will discuss the intracellular signaling pathways induced by chemokines, particularly those activated at the leading edge of migrating cells which lead to cell polarization, cytoskeleton reorganization and motility.  相似文献   

17.
Li G  Lubin FD  McGee DW 《Cellular immunology》2004,231(1-2):30-39
Intestinal epithelial cells (IECs) produce several potent cytokines in response to interleukin-1 (IL-1) and may play a role in the inflammatory response. Previously, we determined that treatment of the Caco-2 cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced cytokine secretion and mRNA levels, suggesting that the alpha3beta1 integrin may play a role in the regulation of IEC cytokine responses to IL-1. In this report, treatment of the Caco-2 cells with the anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced levels of NF-kappaB binding activity in nuclear extracts, as determined by EMSA, as well as phosphorylation and degradation of the inhibitor, I(kappa)B(alpha). The anti-integrin antibody treatment was also found to suppress I(kappa)B kinase (IKK) activity and IKK(beta) phosphorylation. Culture of the Caco-2 cells on purified laminin-5, the ligand for the alpha3beta1 integrin, also resulted in suppression of IL-1 induced phosphorylation of I(kappa)B(alpha) and IKK(beta). Together with our previous findings, these results suggest that alpha3beta1 integrin binding results in a suppression of the IL-1 signaling pathway leading to the activation of NF-(kappa)B and ultimately IEC cytokine responses. These studies define a novel regulatory mechanism which may be important in the control of IEC cytokine responses during inflammation.  相似文献   

18.
19.
Addition of actin monomer (G-actin) to growing actin filaments (F-actin) at the leading edge generates force for cell locomotion. The polymerization reaction and its regulation have been studied in depth. However, the mechanism responsible for transport of G-actin substrate to the cell front is largely unknown; random diffusion, facilitated transport via myosin II contraction, local synthesis as a result of messenger ribonucleic acid localization, or F-actin turnover all might contribute. By tracking a photoactivatable, nonpolymerizable actin mutant, we show vectorial transport of G-actin in live migrating endothelial cells (ECs). Mass spectrometric analysis identified Myo1c, an unconventional F-actin-binding motor protein, as a major G-actin-interacting protein. The cargo-binding tail domain of Myo1c interacted with G-actin, and the motor domain was required for the transport. Local microinjection of Myo1c promoted G-actin accumulation and plasma membrane ruffling, and Myo1c knockdown confirmed its contribution to G-actin delivery to the leading edge and for cell motility. In addition, there is no obvious requirement for myosin II contractile-based transport of G-actin in ECs. Thus, Myo1c-facilitated G-actin transport might be a critical node for control of cell polarity and motility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号