首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
M Ueno  V Mizuhira 《Histochemistry》1984,80(3):213-217
Periodical changes in Ca2+-ATPase and Mg2+-ATPase activity were observed cytochemically in the crayfish gastrolith epithelium during the molting cycle in relation to the calcium transport mechanism. The ATPase activity was demonstrated by a new one-step lead citrate method. The reaction products were mainly restricted to the matrix of type II cell mitochondria. The Ca2+-ATPase activity was intensely observed in two calcium moving stages, the small gastrolith period which indicates the beginning of gastrolith formation, and the aftermolt , when the calcified gastrolith has been dissolved in the stomach and then reabsorbed from the stomach epithelium into the newly formed soft exoskeleton through the blood. Although the intensity of reaction products of Mg2+-ATPase varied in each stage, the enzymatic activity was observed throughout all molting stages. Reaction products were observed in all mitochondria, basement membranes, apical cytoplasmic membranes, and in some lysosomes. In conclusion, periodical changes in the two types of ATPase activity were seen in the mitochondria of gastrolith epithelium during the molting cycle, but Ca2+-ATPase activity seemed to be more prominently synchronized to the calcium movement in the gastrolith epithelium than Mg2+-ATPase activity. There results provide the strong evidence that Ca2+-ATPase may act strongly in the calcium transport system of crayfish molting.  相似文献   

2.
The distribution of ecdysteroid binding sites in the stomach and gastrolith disc tissue of crayfish (Procambarus clarkii) was examined in relation to the molting stage by thaw-mount autoradiography. The radiolabeled hormone analogue ponasterone A (25-deoxy-20-hydroxyecdysone) was used. Ecdysteroid binding sites were demonstrated only in certain molting stages, the small gastrolith period and the aftermolt stage. In gastrolith epithelium, ponasterone A binding sites first appeared in the cytoplasm, and then in the nuclei and cytoplasm. In the stomach epithelium, many nuclear binding sites were detectable during the period of gastrolith secretion. These periodical changes in specific ponasterone A binding when correlated with the molting stages clearly show that ecdysteroids may function as an initiator for gastrolith formation and reabsorption. The findings also suggest that ecdysteroids control calcium transport in the stomach epithelium. The time-related and functional differences of cytoplasmic and nuclear concentration of ecdysteroid receptors indicate the presence of cytoplasmic and nuclear receptors associated with specific actions.  相似文献   

3.
Summary The distribution of ecdysteroid binding sites in the stomach and gastrolith disc tissue of cryafish (Procambarus clarkii) was examined in relation to the molting stage by thaw-mount autoradiography. The radiolabeled hormone analogue ponasterone A (25-deoxy-20-hydroxyecdysone) was used. Ecdysteroid binding sites were demonstrated only in certain molting stages, the small gastrolith period and the aftermolt stage. In gastrolith epithelium, ponasterone A binding sites first appeared in the cytoplasm, and then in the nuclei and cytoplasm. In the stomach epithelium, many nuclear binding sites were detectable during the period of gastrolith secretion. These periodical changes in specific ponasterone A binding when correlated with the molting stages clearly show that ecdysteroids may function as an initiator for gastrolith formation and reabsorption. The findings also suggest that ecdysteroids control calcium transport in the stomach epithelium. The time-related and functional differences of cytoplasmic and nuclear concentration of ecdysteroid receptors indicate the presence of cytoplasmic and nuclear receptors associated with specific actions.  相似文献   

4.
Mobilization of calcium during the molt cycle from the cuticle to transient calcium deposits is widely spread in crustaceans. The dynamics of calcium transport to transient calcium deposits called gastroliths and to the cuticle over the course of the molt cycle were studied in the crayfish Cherax quadricarinatus. In this species, calcium was deposited in the gastroliths during premolt and transported back to the cuticle during postmolt, shown by digital X-ray radiograph analysis. The predominant mineral in the crayfish is amorphous calcium carbonate embedded in an organic matrix composed mainly of chitin. Scanning electron micrographs of the cuticle during premolt showed that the endocuticle and parts of the exocuticle were the source of most of the labile calcium, while the epicuticle did not undergo degradation and remained mineralized throughout the molt cycle. The gastroliths are made of concentric layers of amorphous calcium carbonate intercalated between chitinous lamella. Measurements of pH and calcium levels during gastrolith deposition showed that calcium concentrations in the gastroliths, stomach, and muscle were about the same (10 to 11 mmol l(-1)). On the other hand, pH varied greatly, from 8.7+/-0.15 in the gastrolith cavity through 7.6+/-0.2 in muscle to 6.9+/-0.5 in the stomach.  相似文献   

5.
6.
7.
8.
Following the injection of 3H-leucine into a crayfish ganglion, tritiumlabeled proteins were detected remaining in the ganglion and moving at a slow linear rate caudad along the nerve cord. The rate of movement increased linearly with temperature between 5 and 20°C, but ceased at 3° C. The movement was also blocked for a distance around a colchicine-injected ganglion. Both of these observations would be compatible with the involvement of microtubules in slow axoplasmic transport. However, in both instances normal-appearing microtubules were observed by electron microscopy. Gel electropherograms of the denatured labeled proteins showed that the transported proteins are complex and may correspond to most of the axoplasmic proteins including the microtubules.  相似文献   

9.
10.
Summary From in vitro experiments using different binding assays it is in crayfish demonstrated that the cytosol of target tissues is able to bind both ecdysone and ecdysterone. The ability to bind ecdysteroids is destroyed by heating and by treatment with -chymotrypsin and N-ethyl-maleinimide (NEM) (Figs. 4, 5). In target tissues there is a strong positive correlation between protein content and binding (Fig. 6). The association of the hormone-protein-complex is rapid, taking only a few min even at 5° C (Fig. 3). The binding of the two hormones to the cytosol is both specific and saturable. The association constants for the cytoplasmic receptors from hypodermis, hindgut and midgut gland are in the range of 3–6×107 M–1 for ecdysone and 5–7×108 M–1 for ecdysterone (Fig. 8). The data suggest the existence of cytoplasmic ecdysteroid receptors.  相似文献   

11.
Calcium and the mechanism of axoplasmic transport   总被引:2,自引:0,他引:2  
S Ochs 《Federation proceedings》1982,41(7):2301-2306
Using desheathed cat peroneal nerves in in vitro studies, Ca2+ was recently shown to be required to maintain axoplasmic transport. Calmodulin was also shown to be present in nerve and to participate in transport. These findings open up new possibilities for a better understanding of the underlying mechanism of transport. In the transport filament model, the materials transported are bound to a common carrier, the transport filaments, which are moved along the microtubules by means of an interaction with the side arms of the microtubules. This is an energy-requiring process that depends on a supply of ATP, which is utilized by the Ca2+,Mg2+-ATPase associated with the side arms of the microtubules. The Ca2+,Mg2+-ATPase is activated by calmodulin at the low micromolar levels of free Ca2+ present in the axon. The level is kept low by calcium-regulatory mechanisms that include mitochondria, endoplasmic reticulum, and calcium-binding proteins. Nerves exposed to higher-than-normal concentrations of Ca2+ in the medium show an increased number of particles in these organelles as expected of their Ca2+-regulatory role. The nature of the calmodulin-Ca,Mg-ATPase complex associated with the side arms is discussed on the basis of the transport model. Also discussed is slow transport, which is explained on the basis of the model as a differential binding affinity to the transport filaments.  相似文献   

12.
13.
Summary Active ion transport against a high electrochemical potential gradient occurs across the epithelium of the gill processes of crayfish. The transport occurs in a thin sheet of cytoplasm underlying cuticula. This cytoplasm is supplied with irregular microvilli on the apical side. The basal plasma membrane invaginates into the cytoplasm forming a dense membrane system which is in close contact with numerous elongated mitochondria. The cytoplasm of the adhering cells is divided by a septated desmosome. It is suggested that the infolded membranes are the main place of ion transport and the close contact of mitochondria with them supplies the optimal energetic conditions for transport.Abbreviations ATP Adenosine-5-triphosphate - ADP adenosine-5-diphosphate  相似文献   

14.
Oral epithelia were isolated from Lobophyllia temprichii and Plerogyra sinuosa and placed in Ussing chambers. Calcium flux was measured under open circuit and short circuit conditions using 45Ca. Only a small transepithelial potential of 1.5 mV was recorded under open circuit conditions and no effect on flux rates were observed when the preparation was short circuited. Unidirectional fluxes in single and paired experiments were consistently greater in the ectoderm to gastroderm direction than from gastroderm to ectoderm with net flux of Ca2+ frequently being more than 3x10-4 Eq mm-2 min-1. A small number of paired experiments showed that net flux of Ca2+ was reduced by Sr2+ and sodium azide but not by dinitrophenol. Unidirectional fluxes from ectoderm to gastroderm appeared to have maxima in the early and late parts of the day when recorded between 0900 and 2100 hrs. It is concluded that active transport of Ca2+ occurs across the isolated oral epitheia and that this may be an initial step in the process of keletal Ca2+ deposition.  相似文献   

15.
16.
Eukaryotic elongation factor 1Bγ (eEF1Bγ) is a subunit of elongation factor 1 (EF1), which regulates the recruitment of amino acyl-tRNAs to the ribosome during protein synthesis in eukaryotes. In addition to structural roles within eEF1, eEF1Bγ has properties which suggest sensory or regulatory activities. We have cloned eEF1Bγ from axial abdominal muscle of freshwater crayfish, Procambarus clarkii. The predicted amino acid sequence has 66% identity to Locusta migratoria eEF1Bγ and 65% identity to Artemia salina eEF1Bγ. We measured eEF1Bγ expression by real-time PCR, using the relative quantification method with 18s ribosomal RNA as an internal calibrator. eEF1Bγ expression was lowest in gill, axial abdominal muscle, and hepatopancreas, and was highest in the antennal gland (5.7-fold above hepatopancreas) and cardiac muscle (7.8-fold above hepatopancreas). In axial abdominal muscle, eEF1Bγ expression was 4.4-fold higher in premolt and 11.9 higher in postmolt compared to intermolt. In contrast, eEF1Bγ was decreased or unchanged in epithelial tissues during pre- and postmolt. eEF1Bγ expression in the hepatopancreas was 3.5-fold higher during intermolt compared to premolt and was unchanged in gill and antennal gland. No significant differences in eEF1Bγ were found after 1 week of acclimation to 4 °C. These results show that eEF1Bγ is regulated at the mRNA level with tissue-specific differences in expression patterns.  相似文献   

17.
This paper describes the ultrastructural modifications that cockroach campaniform sensilla undergo at three major stages in the molting cycle and finds that the sensilla are physiological functional at all developmental stages leading to ecdysis. Late stage animals on the verge of ecdysis have two completely separate cuticles. The campaniform sensillum sends a 220-mum extension of the sensory process through a hole in its cap in the new (inner) cuticle across a fluid-filled molting space to its functional insertion in the cap in the old (outer) cuticle. Mechanical stimulation of the old cap excites the sensillum. The ultrastructural geometry of late stage sensilla, coupled with the observation they are physiolgically functional, supports the hypotheses (a) that sensory transduction occurs at the tip of the sensory process, and (b) that cap identation causes the cap cuticle to pinch the tip of the sensory process, thereby stimulating the sensillum.  相似文献   

18.
19.
Estrogen increasesbaseline transepithelial permeability across CaSki cultures andaugments the increase in permeability in response to hypertonicgradients. In estrogen-treated cells, lowering cytosolic calciumabrogated the hypertonicity-induced augmented increase in permeabilityand decreased baseline permeability to a greater degree than inestrogen-deprived cells. Steady-state levels of cytosolic calcium inestrogen-deprived cells were higher than in estrogen-treated cells.Increases in extracellular calcium increased cytosolic calcium more inestrogen-deprived cells than in estrogen-treated cells. However, inestrogen-treated cells, increasing cytosolic calcium was associatedwith greater increases in permeability in response to hypertonicgradients than in estrogen-deprived cells. Lowering cytosolic calciumblocked the estrogen-induced increase in nitric oxide (NO) release andin the in vitro conversion of L-[3H]arginineto L-[3H]citrulline. Treatment with estrogenupregulated mRNA of the NO synthase isoform endothelial nitric oxidesynthase (eNOS). These results indicate that cytosolic calcium mediatesthe responses to estrogen and suggest that the estrogen increase inpermeability and the augmented increase in permeability in response tohypertonicity involve an increase in NO synthesis by upregulation ofthe calcium-dependent eNOS.

  相似文献   

20.
Summary Rapid unidirectional transport (15 sec) ofl-serine and 2-methylaminoisobutyric acid (MeAIB) was studied in the isolated perfused rat pancreas using a dual-tracer dilution technique. Time-course experiments in the presence of normal cation gradients revealed a time-dependent transstimulation ofl-serine influx and transinhibition of MeAIB influx. Transport of the model nonmetabolized System A analog MeAIB was Na+ dependent and significantly inhibited during perfusion with 1mm ouabain. Although transport ofl-serine was largely Na+ independent, ouabain caused a time-dependent inhibition of transport. Influx of both amino acids appeared to be inhibited by the ionophore monensin but unaffected by a lowered extracellular potassium concentration. Removal of extracellular calcium had no effect on influx of the natural substratel-serine, whereas stimulation of transport by exogenous insulin (100 U/ml) was entirely dependent upon extracellular calcium and unaffected by ouabain. Paradoxically, exogenous insulin had no effect on the time-course of MeAIB influx. The characteristics ofl-serine influx described in earlier studies together with our present findings suggest that insulin may modulate the activity of System asc in the exocrine pancreatic epithelium by a calcium-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号