首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light effects on in vitro adventitious root formation in axillary shoots of a 95-year-old black cherry ( Prunus serotina Ehrh.) were examined using microcuttings derived from cultured vegetative buds. Three studies were performed: 1) complete darkness and 4 levels of continuous white light irradiance were tested at 70, 278, 555 and 833 μmol m−2 s−1; 2) white, red, yellow and blue light were tested to assess the importance of spectral quality; and 3) the effect of blue light at intensities of 7,15, 22 and 30 μmol m−2 s−1 was also studied, Measurements included rooting percentage, total number of roots per shoot, and shoot and root dry weight. There was a strong negative effect of white light intensity upon root formation. Blue light between 15 and 22 μmol m−2: s−1 significantly retarded root formation and completely inhibited it at 36 μmol m−2 s−1. Shoots treated with yellow light exhibited the highest rooting percentage, mean number of roots per shoot, and root dry weight.  相似文献   

2.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

3.
Nutrient acquisition in the mature root zone is under systemic control by the shoot and the root tip. In maize, exposure of the shoot to light induces short-term (within 1–2 min) effects on net K+ and H+ transport at the root surface. H+ efflux decreased (from −18 to −12 nmol m−2 s−1) and K+ uptake (∼2 nmol m−2 s−1) reverted to efflux (∼−3 nmol m−2 s−1). Xylem probing revealed that the trans-root (electrical) potential drop between xylem vessels and an external electrode responded within seconds to a stepwise increase in light intensity; xylem pressure started to decrease after a ∼3 min delay, favouring electrical as opposed to hydraulic signalling. Cutting of maize and barley roots at the base reduced H+ efflux and stopped K+ influx in low-salt medium; xylem pressure rapidly increased to atmospheric levels. With 100 m m NaCl added to the bath, the pressure jump upon cutting was more dramatic, but fluxes remained unaffected, providing further evidence against hydraulic regulation of ion uptake. Following excision of the apical part of barley roots, influx changed to large efflux (−50 nmol m−2 s−1). Kinetin (2–4  µ m ), a synthetic cytokinin, reversed this effect. Regulation of ion transport by root-tip-synthesized cytokinins is discussed.  相似文献   

4.
  An experiment was conducted on intact algal assemblages of stream periphyton to test their response to fluctuating and constant light regimes having the same mean intensity. The light regimes (in μmol·m−2·s−1) were constant light at 100, light fluctuating between 50 and 150 with a period of 5 min, and light fluctuating between 10 and 460 with periods of either 4:1 or 8:2 min. Compared to the rates measured under 100 in μmol·m−2·s−1 constant light conditions, fluctuations ranging between 50 and 150 in μmol·m−2·s−1 with a 5-min period produced a 23% greater rate of photosynthesis. Conversely, fluctuations between 10 and 460 in μmol·m−2·s−1 led to a 59%–74% decrease in photosynthetic activity. Detailed examination of periphytic algal responses to fluctuating light revealed that higher light intensities produced steeper photosynthesis/time slopes, but it was the combined interaction with lower light intensity that ultimately determined overall photosynthetic rate for a given light regime. This study offers compelling evidence that variable light regimes have important consequences for algal photosynthesis in natural streams.  相似文献   

5.
The environmental relationships and ecophysiology of Azorella compacta, a giant cushion plant, were investigated in Parque Nacional Lauca, Chile (18°10'–18°25' S and 69°16' W, 4400 m asl). The diurnal temperature range can reach 42 °C on some days of the year. The surface temperature of A. compacta was 13 °C below that of the air temperature of −7 °C at dawn, but from midmorning to late afternoon, the plant surface temperature remained within a few degrees of the air temperature. Soil surface temperatures did not differ between north- and south-facing slopes, but a model showed an increase in radiation reception by north-facing slopes throughout most of the year. Gas exchange measurements of A. compacta measured at the onset of the wet season ranged from −0.6662 to 11.4 μmol·m−2·s−1, and maximum stomatal conductance (Gs) was 410 mmol·m−2·s−1. The estimated light compensation point was 89 μmol·m−2·s−1 and estimated light saturation occurred at about 1280 μmol·m−2·s−1. Diurnal water potential measurements for A. compacta ranged from −1.67 to −2.65 MPa. This is one of the first ecophysiological studies of a tropical alpine cushion plant.  相似文献   

6.
Glutathione peroxidase (GPX)-like proteins (GPX-1 and GPX-2) of Synechocystis PCC 6803 ( S. PCC 6803) reduce unsaturated fatty acid hydroperoxides using NADPH, but not reduced glutathione (GSH), as an electron donor. Here, we generated transgenic Arabidopsis plants overexpressing S. PCC 6803 GPX-2 in the cytosol (AcGPX2) or chloroplasts (ApGPX2). The activities toward α-linolenic acid hydroperoxide in ApGPX2 and AcGPX2 plants were 6.5–11.5 and 8.2–16.3 nmol min−1 mg protein−1, respectively, while no activity (<0.1 nmol min−1 mg protein−1) was detected in the wild-type plants. Both transgenic lines (AcGPX2 and ApGPX2) showed enhanced tolerance to oxidative damage caused by treatment with H2O2 (10 m M ), Fe ions (200 μ M ) or methylviologen (50 μ M ) and environmental stress conditions, such as chilling with high light intensity (4°C, 1000 μmol photons m−2 s−1), high salinity (100 m M NaCl) or drought. The degree of tolerance of the transgenic plants to all types of stress was correlated with the levels of lipid peroxide suppressed by the overexpression of S. PCC 6803 GPX-2. Under conditions of oxidative stress due to the H2O2 treatment, the NADPH/(NADP++ NADPH) ratio in the transgenic plants was lower than that in the wild-type plants. The data reported here indicate that the expression of S. PCC 6803 GPX-2 contributes to the reduction in unsaturated fatty acid hydroperoxides using NADPH in situ under stress conditions in the transgenic plants.  相似文献   

7.
The effects of UV-C (254 nm), UV-A (365 nm) and broad-band UV (280–380 nm) on guard cells of Vicia faba L. cv. Long Pod were investigated in the presence of white light (450 μmol m−2 s−1). UV-C (7 μmol m−2 s−1) was found to cause leakage of 86Rb+ from guard cells, while UV-A (0.3 μmol m−2 s−1) stimulated increased uptake in these cells. A relatively small stimulatory effect was observed by broad-band UV (3 μmol m−2 s−1) during the first 30 min of irradiation with an apparent equilibration of influx and efflux thereafter. Leakage of 86Rb+ from guard cells continued despite the removal of UV-C and an increase in the amount of white light from 450 to 1500 μmol m−2 s−1, suggesting that membranes were irreversibly damaged. Irradiation of guard cells with UV-C for 30, 45 and 90 min indicated that these cells began to be affected already by 30 min UV-C irradiation.  相似文献   

8.
The circadian rhythm in growth of the red macroalga Porphyra umbilicalis (Linnaeus) J. Agardh was investigated under different spectral light conditions in laboratory-grown thalli. A free-running rhythm was observed in constant green or red light at irradiances of 2.5 to 20 μmol photons·m−2·s−1, whereas arhythmicity occurred in constant blue light at 6–20 μmol photons·m−2·s−1. The circadian oscillator controlling growth rhythmicity in Porphyra uses most of the visible sunlight spectrum and possibly multiple photoreceptors with a high sensitivity for blue light and a lower sensitivity for red light. This was inferred from three experimental results: (1) The free-running period, τ, of the growth rhythm decreased with increasing irradiance, from approximately 25 h at 2.5 μmol photons·m−2·s−1 to 22 h at 20 μmol photons·m−2·s−1 in red or green light, (2) Dark pulses of 3 h duration, interrupting otherwise continuous green or red light, caused advances during the subjective day and delays during the subjective night; the circadian oscillator in Porphyra can discriminate darkness from green or red light, and (3) Low-irradiance blue light pulses (2.5 μmol photons·m−2·s−1) shifted the growth rhythm in red light of higher irradiance (e.g. 10 μmol photons·m−2·s−1), and a strong, high amplitude, type 0 phase response curve was obtained that is usually observed with light pulses shifting a circadian rhythm in otherwise continuous darkness.  相似文献   

9.
We conducted a series of experiments to assess the effects of oxidative stress on chlorophyll biosynthesis in the vascular plant Cucumis sativus (cucumber). Specifically, cucumber cotyledons were treated with 100 μ M methyl viologen (MV) and subsequently exposed to dark (0 μE m−2 s−1), low light (40–45 μE m−2 s−1), or high light (1500–1600 μE m−2 s−1). Following treatment, extracts of these samples were subjected to high-performance liquid chromatography (HPLC) to quantitate the accumulation of chlorophyll biosynthetic pathway intermediates. The results of these analyses revealed significant accumulation of Mg-protoporphyrin IX monomethyl ester (Mg-proto IX ME) in green (14-h illuminated) as well as in etiolated cotyledons with MV treatment. These data suggest that MV-induced oxidative stress may have inhibited Mg-proto IX ME cyclase activity. Upon exposure to high light, in the presence or absence of MV, both green and etiolated cotyledons predominantly accumulated protoporphyrin IX (Proto IX). These elevated levels of Proto IX might be attributable to attenuated activity of any or all of the following enzymes: Mg-chelatase, Fe-chelatase and protoporphyrinogen IX oxidase. We also observed that MV-induced oxidative stress impacts on chlorophyll biosynthesis to a greater extent than on photosystem II. These results demonstrate that oxidative stress impedes key steps in chlorophyll biosynthesis by either directly or indirectly inhibiting the activity of these enzymes.  相似文献   

10.
Both reduced illumination and increased turbidity caused a significant reduction in reaction distance of Gobiusculus flavescens . The longest reaction distance, 18.9 cm for larger prey (Calanus finmarchicus) , occurred at a light level of 80 μmol m −2 s −1 compared to 12.9 cm for a smaller prey (Acartia clausi) at 8 μmol m−2 s−1. Above a light saturation level of 10 μmol m−2 s−1, additional light had little influence on reaction distance. In the turbidity experiments, the longest reaction distances were measured at turbidity levels of 10–20 JTU. Prey size influenced reaction distance at all tested light levels. Search time was influenced by prey size only at low illumination. With increasing turbidity, reaction distance to a group of prey was longer than to one prey.  相似文献   

11.
Gyrodinium dorsum Kofoid responds photophobically to flashes of blue light. The photophobic response consists of a cessation of movement (stop-response). Without background light and after a flash fluence above 10 J m−2, 75–85% of the cells show a stop-response, while only 50% of the cells show this response at 5 J m−2. With a flash fluence of 5 J m−2, background light of different wavelengths either increases (614 nm. 5.5–18.2 μmol m−2 s−1) or decreases (700 nm, 18.4–36.0 μmol m−2 s−1) the stop-response. Two hypotheses for the mechanism of the modulation by background light of the photophobic response are discussed: an effect of light on the balance of the photosynthetic system (PS I/PS II) or an effect on a phytochrome-like pigment (Pr/Pfr). This study supports the idea that a phytochrome-like pigment works in combination with a blue light-absorbing pigment. It was also found that cells of Gyrodinium dorsum cultured in red light (39.8 μmol m−2) had a higher absorption in the red region of the absorption spectra than those cultured in white light (92.7 μmol m−2).  相似文献   

12.
Translocation of NH4+ was studied in relation to the expression of three glutamine synthetase (GS, EC 6.3.1.2) isogenes and total GS activity in roots and leaves of hydroponically grown oilseed rape ( Brassica napus ). The concentration of NH4+ in the stem xylem sap of NO3-fed plants was 0.55–0.70 m M , which was ≈60% higher than that in plants deprived of external nitrogen for 2 days. In NH4+-fed plants, xylem NH4+ concentrations increased linearly both with time of exposure to NH4+ and with increasing external NH4+ concentration. The maximum xylem NH4+ concentration was 8 m M , corresponding to 11% of the nitrogen translocated in the xylem. In the leaf apoplastic solution, the NH4+ concentration increased from 0.03 m M in N-deprived plants to 0.20 m M in N-replete plants. The corresponding values for leaf tissue water were 0.33 and 1.24 m M , respectively. The addition of either NO3 or NH4+ to N-starved plants induced both cytosolic gs isogene expression and GS activity in the roots. In N-replete plants, gs isogene expression and GS activity were repressed, probably due to carbon limitations, thereby protecting the roots against the excessive drainage of photosynthates. Repressed gs isogene expression and GS activity under N-replete conditions caused enhanced NH4+ translocation to the shoots.  相似文献   

13.
The effects of light on in vitro proliferation and subsequent in vivo rooting and acclimatisation of Vaccinium corymbosum were investigated. The shoots were exposed in vitro to different irradiances (total radiation ranging from 55 to 240 μmol m−2 s−1) for 7 to 60 days. In vitro growth and proliferation and the possible consequences on in vivo rooting were observed.
As compared to the control treatment (55 μmol m−2 s−1), higher irradiances improved proliferation and rooting ratios only with short applications (7 days). Short but high (210 μmol m−2 s−1) exposures applied at the end of the proliferation phase increased in vivo growth and rooting of the shoots. The shoots treated with strong light for longer times (14 and 28 days) showed both inhibition of growth and red colour of leaves and sprouts, and were less vigorous when transferred in vivo.  相似文献   

14.
Light-dependent inhibition of photosynthetic electron transport by zinc   总被引:2,自引:0,他引:2  
The effects of zinc concentrations up to 400 μ M were examined on three photosynthetic electron transport reactions of thylakoids isolated from Pisum sativum L. cv. Meteor. Zinc (400 μ M ) had no effect on photosystem I mediated electron transport from reduced N,N,N',N'-tetramethyl- p -phenylenediamine to methyl viologen, but inhibited uncoupled electron flow from water to methyl viologen by ca 50% and to 2,6-dichlorophenol-indophenol (DCPIP) by ca 30% at saturating light levels. Zinc inhibition of DCPIP photoreduction was independent of the light intensity to which thylakoids were exposed. Decreasing the photon flux density below 400 μmol m−2 s−1 produced a logarithmic reduction in the zinc-induced inhibition of methyl viologen photoceduction; a stimulation of this reaction was observed below 80 μmol photons m−2 s−1. Increasing light intensity decreased the amount of zinc tightly bound to the thylakoid membranes, but increased the weakly associated zinc which could be removed by washing the membranes with buffer containing Mg2. The results suggest that zinc acts on the photosynthetic electron transport system at two sites. Site 1 is on the oxidizing side of photosystem 2 and the inhibition by zinc is independent of the light intensity. Site 2 is between photosystems 1 and 2 and the electron flow can be positively or negatively affected by zinc depending on the light intensity.  相似文献   

15.
Broad-band UV-B radiation inhibited hypocotyl elongation in etiolated tomato ( Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings. This inhibition could be elicited by < 3 μmol m−2 s−1 of UV-B radiation provided against a background of white light (> 620 μmol m−2 s−1 between 320 and 800 nm), and was similar in wild-type and phytochrome-1-deficient aurea mutant seedlings. These observations suggest that the effect of UV-B radiation is not mediated by phytochrome. An activity spectrum obtained by delivering 1 μmol m−2 s−1 of monochromatic UV radiation against a while light background (63 μmol m−2 s−1 showed maximum effectiveness around 300 nm, which suggests that DNA or aromatic residues in proteins are not the chromophores mediating UV-B induced inhibition of elongation. Chemicals that affect the normal (photo)chemistry of flavins and possibly pterins (KI, NaN, and phenylacetic acid) largely abolished the inhibitor) effect of broad-hand UV-B radiation when applied to the root zone before irradiation. KI was effective at concentrations < 10−4 M , which have been shown in vitro to be effective in quenching the triplet excited stales of flavins but not fluorescence from pterine or singlet states of flavins. Elimination of blue light or reduction of UV-A, two sources of flavin excitation, promoted hypocotyl elongation, but did not affect the inhibition of elongation evened by UV-B. Kl applied after UV-B irradiation had no effect on the inhibition response. Taken together these findings suggest that the chromophore of the photoreceptor system invoked in UV-B perception by tomato seedlings during de-etiolation may be a flavin.  相似文献   

16.
The effects of high salinity (up to 400 m M NaCl) on photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle were investigated in the halophyte Artimisia anethifolia grown under outdoor conditions. In order to examine the changes in PSII photochemistry, photoinhibition, thermal dissipation associated with the xanthophyll cycle in salt-acclimated plants, the experiments were conducted at midday on a clear day (maximal irradiance 1500 μmol m−1 s−1) and on a cloudy day (maximal irradiance 700 μmol m−1 s−1), respectively. With increasing salt concentration, the accumulation of sodium and chloride in leaves increased considerably while the relative growth rate and CO2 assimilation rate decreased significantly. Salinity induced no effects on PSII photochemistry, thermal energy dissipation, and the contents of the xanthophyll cycle pigments either on a clear day or on a cloudy day. However, when compared with those on a cloudy day, PSII photochemistry decreased and thermal energy dissipation increased significantly in both control and salt-acclimated plants on a clear day. The levels of zeaxanthin and antheraxanthin at the expense of violaxanthin were higher on a clear day than on a cloudy day. The results suggest that photoinhibition and the xanthophyll cycle were not induced by high salinity but by high light only in A. anethifolia plants. The results also suggest that A. anethifolia showed high resistance not only to high salinity, but also to photoinhibition even when it was treated with high salinity and exposed to full sunlight.  相似文献   

17.
SUMMARY. Diel vertical migrations of a dinoflagellate, Ceratium hirundinella , were induced in a laboratory tube (1.63 × 0.15 m) under a light-dark cycle. The timing of vertical migrations differed between cultures in the exponential and stationary phases of growth; the latter showed a greater coincidence with the light regime.
Migration of cells into the surface layers occurred at low values of surface irradiance (<550 μeinsteins m−2 s−1). At irradiances more closely approaching summer sunshine (> 1300 μE m−2 s−1) there was a marked avoidance of surface waters, and population maxima were found at depths associated with a relative irradiance level of 10% or c. 150 μE m−2 s−1). Thermal stratification restricted downward movement of cells into the cooler layers. The combination of high surface irradiance and thermal stratification resulted in large, stable, sub-surface maxima of Ceratium , similar to those observed in natural waters under comparable environmental conditions.  相似文献   

18.
Benzyladenine (BA) stimulated 5-aminolevulinic acid (ALA) accumulation in the presence of levulinic acid during illumination with 43 μmol m−2 s−1 light in excised etiolated cotyledons of cucumber ( Cucumis sativus L. cv. Aonagajibai). A short dark-pretreatment (6 h) with BA eliminated the lag phase of ALA accumulation. The rate of ALA accumulation during the steady-state phase in cotyledons pretreated with BA for a long period (14 h) was considerably accelerated compared to that in cotyledons pretreated with BA for 6 h. The rate of ALA accumulation during the lag phase was saturated at a very low light fluence (<1.4 μmol m−2 s−1) in both BA-pretreated and water-control cotyledons. The steady-state rate of ALA accumulation increased with increasing light fluence up to 43 μmol m−2 s−1 (parallel to that of Chl formation) in water-control cotyledons. In contrast, in cotyledons pretreated with BA for either 6 or 14 h, the steady-state rate reached a plateau at a very low light fluence. Based on the above results together with our finding that there are two components of Chl formation (M. Dei, 1984. Physiol. Plant. 62: 521–526) possible intermediate steps of Chl biosynthesis pathway affected by BA and light intensity are discussed.  相似文献   

19.
The abundance and cellular location of Fe-containing superoxide dismutase (Fe-SOD) in trichomes of Nodularia , Aphanizomenon and Anabaena collected from various depths in the Baltic Sea, and in trichomes of a cultured Nodularia strain, BC Nod-9427, isolated from the Baltic Sea, was examined by immunogold labelling. For trichomes collected from natural populations the areal concentration of Fe-SOD labelling decreased with depth: trichomes collected from surface accumulations had between 8 and 11 gold particles μm−2 whereas trichomes collected from a depth of 18 m were unlabelled. When trichomes collected from a depth of 10 m (mean areal labelling density 0·5 gold particles μm−2) were exposed to the higher irradiances present at 1 m, the areal concentration of Fe-SOD increased to 3·5–4 gold particles μm−2 within 4 h. When cultures of Nodularia strain BC Nod-9427, adapted to low light (10 μmol m−2 s−1), were transferred to an incident irradiance of 1350 μmol m−2 s−1, a doubling of the areal concentration of Fe-SOD gold label was observed within 1 h. Addition of 3-(3,4-dichlorophenyl)-1,1'-dimethylurea (DCMU) to cultures immediately before their transfer to increased illumination resulted in a decrease in areal Fe-SOD concentrations whereas addition of CdCl2 caused an increase over and above that induced by the elevated irradiance. These results suggest that Baltic Sea cyanobacteria are able to modulate their Fe-SOD content but that this might be in response to oxidative stress rather than to light per se .  相似文献   

20.
Abstract: Very large numbers (3466 ml−1) of ciliated protozoa were found living beneath the oxic-anoxic boundary in a stratified freshwater pond. Most ciliates (96%) contained symbiotic algae ( Chlorella spp.). Peak abundance was in anoxic water with almost 1 mol free CO2 m−3 and a midday irradiance of 6 μmol photon m−2 s−1. Photosynthetic rate measurements of metalimnetic water indicated a light compensation point of 1.7 μmol photon m−2 s−1 which represents 0.6% of sub-surface light. We calculate that photosynthetic evolution of O2 by symbionts is sufficient to meet the demand of the host ciliates for 13 to 14 hours each day. Each 'photosynthetic ciliate' may therefore become an aerobic island surrounded by anoxic water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号