首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of thyroxine (T4) and/or recombinant chicken growth hormone (rcGH) supplementation on immune function and on immune cell maturation was examined in Obese strain chickens. Day-old Obese strain chicks received the control treatments or were treated with either T4 (supplemented in the diet), T4-rcGH, or rcGH (by daily injection) in a full factorial design. At 4 weeks of age, the proliferative activity of peripheral blood T cells to either mitogenic or allogenic cell (mixed lymphocyte response) challenge was assessed. At the same time, peripheral blood lymphocytes and thymocytes were collected and prepared for flow cytometry analysis. Proliferative responses to both T cell mitogens and allogeneic splenocytes were significantly increased (P less than 0.05) by rcGH treatment, while the combined T4-rcGH treatment resulted in a significant increase in allogeneic and in concanavalin A responsiveness, but not in the response to phytohemagglutinin. All supplemented groups showed a significant decrease in the mean fluorescent intensity for CT-1a+ thymocytes, while thymocytes from birds receiving either T4 or rcGH alone had higher proportions of CD4+ and CD8+ cells. The monoclonal antibody staining of thymocytes from T4-rcGH-supplemented animals more closely resembled that of the unsupplemented controls. Among the peripheral blood lymphocytes, there were no changes in the numbers of CD4+, CD8+, or sIg+ cells as a result of treatment. The mean fluorescent intensity of sIg+ cells was significantly decreased, however, as a result of T4 supplementation when given either alone or in combination with rcGH. Finally, the mean fluorescent intensity ratios of CD4+ to CD8+ cells was significantly increased as a result of rcGH supplementation. These results strongly support a role for both the thyroid hormones and growth hormone in regulating and/or enhancing immune function, with changes in functional responses paralleled by concomitant changes in the T cell populations as expressed by shifts in T cell surface marker expression.  相似文献   

2.
In a previous study, we raised a mAb (MTS 35) reacting with a plasma membrane Ag expressed on both cortical thymocytes and a subset of thymic medullary epithelial cells. In view of the shared expression of this molecule, we have defined it as thymic shared Ag-1 (TSA-1). Considering its selective reactivity with cortical, but not medullary thymocytes, the relevance of TSA-1 as a marker of immature T cells was investigated in detail in this study, using multicolor flow cytometric analysis. TSA-1 was found on all immature thymocyte subsets (CD3-4-8-, CD3-4+8-, CD3-4-8+, CD3-4+8+, CD3low4+8+). Conversely, CD3high4+8- and CD3high4-8+ thymocytes, early thymic migrants and peripheral T cells were TSA-1-. More refined gating and analysis of the transitional CD3intermediate/high4+8+ thymocytes, proposed candidates for negative selection, demonstrated that approximately one half were TSA-1-. In fact, there was a directly inverse relationship between TSA-1 and CD3 expression on thymocytes. In the periphery, TSA-1 was detected on B lymphocytes. TSA-1 is PI-linked and has a molecular mass of 17 kDa nonreduced, or 12 to 13 kDa reduced. Through cross-correlation analysis, this molecule was distinct from H-2K, PNA-R, CD5, CD11a/18, Thy-1, HSA, Ly6A/E, Ly6C, ThB, CD25, CD44. Hence TSA-1 appears to be a unique marker which exquisitely separates mature from immature thymocytes.  相似文献   

3.
Developmental regulation of the intrathymic T cell precursor population   总被引:4,自引:0,他引:4  
The maturation potential of CD4-8- thymocytes purified from mice of different developmental ages was examined in vivo after intrathymic injection. As previously reported, 14-day fetal CD4-8- thymocytes produced fewer CD4+ than CD8+ progeny in peripheral lymphoid tissues, resulting in a CD4+:CD8+ ratio of less than or equal to 1.0. In contrast, adult CD4-8- thymocytes generated CD4+ or CD8+ peripheral progeny in the proportions found in the normal adult animal (CD4+:CD8+ = 2 to 3). Here we have shown that CD4-8- precursor cells from the 17-day fetal thymus also produced peripheral lymphocytes with low CD4+:CD8+ ratios. Precursors from full term fetuses produced slightly higher CD4+:CD8+ ratios (1.1-1.6) and precursors from animals three to 4 days post-birth achieved CD4+:CD8+ ratios intermediate between those produced by fetal and adult CD4-8- thymocytes. Parallel changes in the production of alpha beta TCR+ peripheral progeny were observed. Fetal CD4-8- thymocytes generated fewer alpha beta TCR+ progeny than did adult CD4-8- thymocytes. However, peripheral lymphocytes arising from either fetal or adult thymic precursors showed similar proportions of gamma delta TCR+ cells. The same pattern of progeny was observed when fetal CD4-8- thymocytes matured in an adult or in a fetal thymic stromal environment. In contrast to fetal thymic precursors, fetal liver T cell precursors resembled adult CD4-8- thymocytes by all parameters measured. These results suggest that fetal thymic precursors are intrinsically different from both adult CD4-8- thymocytes and fetal liver T cell precursors. Moreover, they lead to the hypothesis that the composition of the peripheral T cell compartment is developmentally regulated by the types of precursors found in the thymus. A model is proposed in which migration of adult-like precursors from the fetal liver to the thymus approximately at birth triggers a transition from the fetal to the adult stages of intrathymic T cell differentiation.  相似文献   

4.
Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells.  相似文献   

5.
The myelopoietic inducing potential of mouse thymic stromal cells   总被引:1,自引:0,他引:1  
The thymus has generally been considered as being solely involved in T cell maturation. In this study we have demonstrated that mouse thymic stroma can also support myelopoiesis. Bone marrow from mice treated with 5-fluorouracil was depleted of cells expressing Mac-1, CD4, and CD8 and incubated on lymphocyte-free monolayer cultures of adherent thymic stromal cells. After 7 days there was a marked increase in nonadherent cells, the majority of which were Mac-1+, FcR+, and HSA+. These proliferating bone marrow cells also expressed markers (MTS 17 and MTS 37) found on thymic stromal cells. Such cells were not found in thymic cultures alone, in bone marrow cultured alone, or on control adherent cell monolayers. Supernatants from the cultured thymic stroma, however, were able to induce these cell types in the bone marrow precursor population. Incubation of normal thymocytes with a monolayer of these in vitro cultivated Mac-1+, MTS 17+, MTS 37+ myeloid cells leads to selective phagocytosis of CD4+ CD8+ cells. Hence, this study demonstrates that the thymic adherent cells can induce myelopoiesis in bone marrow-derived precursor cells and provide a form of self-renewal for at least one population of thymic stromal cells. Furthermore, these induced cells are capable of selective phagocytosis of CD4+ CD8+ thymocytes and may provide one mechanism for the selective removal of such cells from the thymus.  相似文献   

6.
Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3-CD4-CD8-, CD4+CD8+, and CD3highCD4-CD8+ thymocytes but is down-regulated on approximately 40% of CD3highCD4+CD8- thymocytes. Expression on peripheral TCR-alphabeta+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2-/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8- thymocytes and TCR-gamma delta+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.  相似文献   

7.
In nonobese diabetic (NOD) mice, T cells play a major role in mediating autoimmunity against pancreatic islet beta-cells. We and others previously reported that age-related alterations in the thymic and peripheral T cell repertoire and function occur in prediabetic NOD mice. To study the mechanism responsible for these T cell alterations, we examined whether a defect exists in the thymus of NOD mice at the level of TCR-mediated signaling after activation by Con A and anti-CD3. We found that thymocytes from NOD mice respond weakly to Con A- and anti-CD3-induced proliferation, compared with thymocytes from control BALB/c, BALB.B, (BALB.B x BALB.K)F1, C57BL/6, and nonobese non-diabetic mice. This defect correlates with the onset of insulitis, because it can be detected at 7 to 8 weeks of age, whereas younger mice displayed a normal T cell responsiveness. Thymic T cells from (NOD x BALB/c)F1 mice, which are insulitis- and diabetes-free, exhibit an intermediate stage of unresponsiveness. This T cell defect is not due to a difference in the level of CD3 and IL-2R expression by NOD and BALB/c thymocytes, and both NOD CD4+ CD8- and CD4- CD8+ mature thymic T cells respond poorly to Con A. BALB/c but not NOD thymic T cells respond to Con A in the presence of either BALB/c or NOD thymic APC, suggesting that the thymic T cell defect in NOD mice is intrinsic to NOD thymic T cells and is not due to an inability of NOD APC to provide a costimulatory signal. The defect can be partially reversed by the addition of rIL-2 to NOD thymocytes. To determine whether a defect in signal transduction mediates this NOD thymic T cell unresponsiveness, we tested whether these cells elevate their intracellular free Ca2+ ion concentration in response to Con A. An equivalent Con A-induced increase in Ca2+ ion concentration in both NOD and BALB/c thymocytes was observed, suggesting a normal coupling between the CD3 complex and phospholipase C in NOD thymocytes. In contrast to their low proliferative response to Con A or anti-CD3, NOD thymocytes respond normally (i.e., as do BALB/c thymocytes) to the combinations of PMA plus the Ca2+ ionophore ionomycin and PMA plus Con A but weakly to Con A plus ionomycin. Our data suggest that the age-related NOD thymocyte unresponsiveness to Con A and anti-CD3 results from a defect in the signaling pathway of T cell activation that occurs upstream of protein kinase C activation.  相似文献   

8.
Expression of ets genes in mouse thymocyte subsets and T cells   总被引:27,自引:0,他引:27  
The cellular ets genes (ets-1, ets-2, and erg) have been identified by their sequence similarity with the v-ets oncogene of the avian erythroblastosis virus, E26. Products of the ets-2 gene have been detected in a wide range of normal mouse tissues and their expression appears to be associated with cell proliferation in regenerating liver. In contrast, the ets-1 gene was previously shown to be more highly expressed in the mouse thymus than in other tissues. Because the thymic tissue contains various subsets of cells in different stages of proliferation and maturation, we have examined ets gene expression in fetal thymocytes from different stages of development, in isolated subsets of adult thymocytes, and in peripheral T lymphocytes. Expression of the ets-1 gene was first detected at day 18 in fetal thymocytes, corresponding to the first appearance of CD4+ (CD4+, CD8-) thymocytes, and reaches maximal/plateau levels of expression in the thymus at 1 to 2 days after birth. The ets-2 gene expression is detected at least 1 day earlier, coinciding with the presence of both double-positive (CD4+, CD8+) and double-negative (CD4-, CD8-) blast thymocytes and reaches maximal/plateau levels 1 day before birth. In the adult thymus, ets-1 and ets-2 mRNA expression is 10- to 8-fold higher respectively in the CD4+ subset than in the other subsets examined. Higher levels of p55 ets-1 protein were also shown to exist in the CD4+ subset. Because the CD4+ thymic subset is the pool from which the CD4+ peripheral, helper/inducer T cells are derived, the ets gene expression was examined in lymph node T cells. Both the CD4+ and the CD8+ T cells subsets had lower ets RNA levels than the CD4+ thymocytes. These results suggest that ets-2 and more particularly ets-1 gene products play an important role in T cell development and differentiation and are not simply associated with proliferating cells, which are observed at a higher frequency in fetal thymocytes, or dull Ly-1 (low CD5+), and double-negative (CD4-, CD8-) adult thymocytes. Selectively enhanced expression of ets-1 gene may be observed in thymic CD4+ thymocytes because these cells have uniquely encountered MHC class II or other Ag in the thymic environment. These cells may have been subsequently stimulated to activate the ets genes in conjunction with their differentiation of helper/inducer function(s) and expression of mature TCR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Morphine-induced thymic hypoplasia is glucocorticoid-dependent.   总被引:5,自引:0,他引:5  
Mice administered morphine as a s.c. pellet implant exhibit a marked and sustained thymic hypoplasia as well as suppression of T lymphocyte functions. In the present study, the effects of morphine on thymocyte differentiation were characterized. Morphine produced a significant decrease in both the number and proportion of CD4+/CD8+ double positive (DP) cells. The percentage of the CD4+/CD8-, CD4-/CD8+, and CD4-/CD8- double negative subsets in these mice was proportionally increased. Morphine also increased the proportion of cells expressing either the epsilon-chain of the CD3 complex or the IL-2R. The initial reduction in the proportion of DP thymocytes appeared fully recovered by 10 days post-implantation, although the number of DP thymocytes gradually returned to normal over a 3-wk period. Morphine administration resulted in a marked increase in serum corticosterone levels, and a single injection of dexamethasone mimicked the effects of morphine on thymus differentiation. Furthermore, adrenalectomy abolished the morphine-induced decrease in CD4+/CD8+ thymocytes relative to a sham-operated group. The present findings are consistent with the hypothesis that morphine-induced thymic hypoplasia may be mediated by an increase in the circulating levels of corticosterone.  相似文献   

10.
The majority of CD4+8- thymocytes are functionally immature.   总被引:5,自引:0,他引:5  
The thymus is the major site of T cell development and repertoire selection. During these processes, T cells segregate into two subsets that express either CD4 or CD8 accessory molecules, the phenotype of peripheral T cells. Analysis of CD4+8- thymocytes revealed that the majority of these cells express the heat-stable Ag (HSA) but not the nonclassical class I Ag, Qa-2. This HSA+, Qa-2- phenotype is similar to that of the less mature, CD4+8+ thymocytes. The remaining CD4+8- thymocytes possess the HSA-, Qa-2+ phenotype of peripheral T cells. To determine whether the Qa-2-, CD4+8- thymic subset is fully mature, we have analyzed the functional status of these CD4+8- subpopulations. The results indicate that only those thymocytes which express Qa-2 are fully responsive to anti-TCR stimulation in a manner analogous to peripheral T cells. The Qa-2- subset is nonresponsive to stimulation by anti-TCR antibodies that have been immobilized to plastic, even in the presence of lymphokines or syngeneic APC. This subset is, however, capable of proliferating to allogeneic cells or to anti-TCR on the surface of syngeneic APC, although not to the levels achieved by Qa-2+ thymocytes. Thus, the Qa-2- subset appears to require additional interactions which are not necessary for peripheral T cells or Qa-2+ thymocytes. Relevant to this issue, the Qa-2+ thymocyte subset does not appear until relatively late in development, and does not reach adult frequencies until several weeks after birth. These results would suggest that there is a progression from HSA+, Qa-2- to HSA-, Qa-2+ which parallels the maturation of functional responsiveness. These findings are important to understanding T cell selection since thymocytes with such a decreased responsiveness may have a differential capacity for tolerance induction. The results presented suggest that the bulk of CD4+8- thymocytes are not fully mature and that Qa-2 may serve as a marker for T cells with a more complete functional competence.  相似文献   

11.
The role of lymphostromal complexes in T-cell differentiation is far from elucidated, mainly because a clear association of a particular stromal cell type with a distinct thymocyte subset has never been identified. Using an in vitro system, detecting the adherence of thymocytes to a thymic medullary epithelial cell line (E-5), we showed that the phenotype of these thymocytes was that of cortical type: Thy-1hi, LFA-1+, PNAhi, CD4+CD8+, MEL-14-/lo, IL-2R-, CD3-/lo, and TcR V beta 8-/lo. They were enriched in cells in G2/M at the time of complex formation, showed a higher basal proliferation in culture, and did not respond to PHA, IL-2 and only marginally to Con A. These data show that complex formation with mouse thymic medullary epithelium selects for CD4+CD8+ thymocytes, as shown by the marked decrease in CD4+CD8-/CD4-CD8+ thymocytes, and the incapacity of CD4-CD8- thymocytes to adhere.  相似文献   

12.
Thymic rosettes, structures consisting of 3-30 thymic lymphoid cells attached to a central macrophage or dendritic cell, were released from mouse thymus tissue by collagenase digestion. They were shown to be preexistent structures within the thymus, but to be subject to extensive exchange with free thymocytes under certain conditions. An isolation procedure was developed, using a new technique of zonal unit-gravity elutriation, which minimized exchange and produced a completely pure sample of the larger rosettes. The rosette-associated thymocytes were analyzed by two- and three-color immunofluorescent staining and flow cytometry. The dominant cell type was a small, CD4+CD8+, cortical-type thymocyte. However, all of the established thymus subpopulations defined by CD4 and CD8, including CD4-CD8+ and CD4+CD8- mature thymocytes and CD4-CD8- early thymocytes, were also present in rosettes. Very few of the cells present were of an intermediate or transitional phenotype. Rosette-associated thymocytes were somewhat enriched in large dividing thymocytes, in CD4-CD8- thymocytes, and in mature thymocytes expressing the T-cell antigen receptor-CD3 complex. Their most striking characteristic was a marked depletion in small thymocytes lacking surface H-2K expression, a major population among free thymocytes. The physiological role of the rosette structure is discussed, and it is suggested that the heterogeneity of the associated thymocytes in part reflects the existence of different types of rosettes in different areas of the thymus.  相似文献   

13.
The MHC Ag, Qa-2, is expressed on all peripheral T cells, a subset of bone marrow cells, and to a lesser extent on B cells. The Qa-2 Ag is also expressed on 5 to 6% of normal adult murine thymocytes. Through the use of flow cytometry, counterflow centrifugal elutriation and acridine orange staining, we have analyzed the cell surface phenotype, cell size, and cell cycle status of this thymic population. Our studies indicate that Qa-2+ thymocytes are large, non-mitotic, G1 cells which have the cell surface phenotype of CD5+, CD3+, J11dLO and lack receptors for peanut agglutinin. This population can be further subdivided into three categories; CD4+/CD8-, CD4-/CD8+, and CD4-/CD8-. These data indicate that Qa-2 surface expression can only be detected on thymocytes in the final stages of differentiation. The Qa-2 Ag can be used as a cell surface marker to identify a unique subset of mature thymocytes.  相似文献   

14.
The MTEC1 cell line,established in our laboratory,is a normal epithelial cell line derived from thymus medulla of Balb/c mice and these cells constituteively produce multiple cytokines.The selection of thymic microenvironment on developing T cells was investigated in an in vitro system.Unseparated fresh thymocytes from Balb/c mice were cocultured with MTEC1 cells or/and MTEC1-SN,then,the viability,proliferation and phenotypes of cultured thymocytes were assessed.Without any exogenous stimulus,both MTEC1 cells and MTEC1-SN were able to maintain the viability of thymocytes,while only the MTEC1 cells,not the MTEC1-SN,could directly activate thymocytes to exhibit moderate proliferation,indicating that the proliferative signal is delivered through cell surface interatcions of MTEC1 cells and thymocytes.Phenotype analysis on FACS of viable thymocytes after coculture revealed that MTEC1 cells preferentially activate the subsets of CD4^ CD8^-,CD4^ CD^8 and CD^4- CD^8- thymocytes;whereas MTEC1-SN preferentially maintained the viability of CD4^ CD^8- and CD4^-CD8^ thymocyte subsets.For the Con A-activated thymocytes.both MTEC1 cells and MTEC1-SN provided accessory signal(s) to significantly increase the number of viable cells and to markedly enhance the proliferation of thymocytes with virtually equal potency,phenotyped as CD4^ CD8^-,CD4^-CD8^ ,and CD^4-CD8^-subests,In summary,MTEC1 cells displayed Selection of thymic epithelial cells on thymocyte subsets. selective support to the different thymocyte subsets,and the selectivity is dependent on the status of thymocytes.  相似文献   

15.
Bone marrow cells from 6- to 8-week-old athymic nude mice were depleted of nylon-wool adherent cells and cultured in vitro at low cell numbers (300 cells/well) in medium supplemented with a supernatant from a thymoma cell line. About 1% of cultured cells grew. Pooled cultures contained cells expressing CD3 (52%), CD4 (37%), CD8 (11%), Thy 1.2 (72%), MAC-1 (43%) and J11d (86%) but no cells expressing sIg. They also contained cells expressing mRNA for the alpha, beta, gamma, and delta chains of the T cell receptor as assessed with C region probes using a sensitive dot blot assay. These cells appear to develop from progenitors which are CD3-. When pooled Day 10 cultures were depleted of nylon-wool adherent cells, the remaining cells were nearly all J11d+, Thy 1.2+, MAC-1-, CD3+, and either CD4+CD8+; CD4+CD8-; CD4-CD8+, or CD4-CD8-; i.e., their surface marker patterns were reminiscent of those of thymocytes. We conclude that our culture system is enabling bone marrow precursors to commence differentiation down the T cell lineage in the absence of a thymic environment.  相似文献   

16.
The object of this study was to further characterize the pathophysiology of the peripheral T lymphopenia in the BB rat. Towards this end, surface markers on unseparated thymocytes and purified thymocyte subsets from age- and sex-matched diabetes-resistant (BBn) and diabetes-prone (BBd) rats were analyzed by two-color flow cytometry. The proportions of thymocytes falling into each of the four main phenotypic subsets were comparable in BBn (n = 9) and BBd (n = 8) rats: respectively, 4.6 +/- 0.6% and 4.4 +/- 0.8%, CD4-8-; 68.1 +/- 1.9% and 71.1 +/- 3.2%, CD4+8+; 18.3 +/- 1.5% and 15.4 +/- 2.3%, CD4+8-; 9.1 +/- 0.9% and 9.1 +/- 1.0%, CD4-8+. In addition, absolute numbers of thymocytes were not significantly different. The levels of expression of CD4, TCR-alpha beta within each thymocyte subset were comparable in BBn and BBd animals as were the anti-TCR-induced proliferative responses of their CD4+8- and CD4-8+ thymocytes. However, phenotypic abnormalities within the CD4-8+ thymocyte subset of the BBd rat were found. A very significant (p less than 0.005) deletion of mature CD4-8+, TCR-alpha beta + thymocytes and a proportional increase (p less than 0.005) of immature CD4-8+, TCR-alpha beta low thymocytes. Moreover, a twofold decrease of CD8 expression by mature CD4-8+ thymocytes was observed in BBd animals. These results suggest that an impaired thymic maturation contributes to the peripheral T lymphopenia of the BBd rat.  相似文献   

17.
Expression and function of the UM4D4 antigen in human thymus   总被引:3,自引:0,他引:3  
UM4D4 is a newly identified T cell surface molecule, distinct from the Ag receptor and CD2, which is expressed on 25% of peripheral blood T cells, resting or activated. Monoclonal anti-UM4D4 is mitogenic for T cells and T cell clones. Since alternative activation pathways independent of Ag/MHC recognition may be important in thymic differentiation, the expression and function of UM4D4 was examined in human thymus. UM4D4 was found on the surface of 6% of thymocytes. All thymocyte subsets contained UM4D4+ cells but expression was greatest on thymocytes that were CD1- (12%), CD3+ (11%) and especially CD4-CD8- (18%). CD3+CD4- CD8- cells, most of which bear the gamma delta-receptor, were greater than or equal to 50% + for UM4D4. Moreover, anti-UM4D4 was comitogenic for thymocytes together with PMA or IL-2. Anti-UM4D4 also reacted strongly with a subset of thymic epithelial cells in both cortex and medulla. Dual color fluorescence microscopy, with anti-UM4D4 and antibodies to other thymic epithelial Ag, showed UM4D4 expression on neuroendocrine thymic epithelium but not on thymic fibrous stroma. Thus, UM4D4 is expressed on, and represents an activation pathway for, a subset of thymic T cells. In addition, this determinant, initially identified as a novel T cell activating molecule, is broadly expressed by neuroendocrine thymic epithelium. Although the function of UM4D4 on the thymic epithelial cells is not yet clear, it is possible that UM4D4 represents a pathway for the functional activation of a subset of the thymic epithelium as well as a subset of thymocytes, thus playing a dual role in T cell differentiation.  相似文献   

18.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

19.
This study has investigated the cross-reactivity upon thymic selection of thymocytes expressing transgenic TCR derived from a murine CD8+ CTL clone. The Idhigh+ cells in this transgenic mouse had been previously shown to mature through positive selection by class I MHC, Dq or Lq molecule. By investigating on various strains, we found that the transgenic TCR cross-reacts with three different MHCs, resulting in positive or negative selection. Interestingly, in the TCR-transgenic mice of H-2q background, mature Idhigh+ T cells appeared among both CD4+ and CD8+ subsets in periphery, even in the absence of RAG-2 gene. When examined on beta2-microglobulin-/- background, CD4+, but not CD8+, Idhigh+ T cells developed, suggesting that maturation of CD8+ and CD4+ Idhigh+ cells was MHC class I (Dq/Lq) and class II (I-Aq) dependent, respectively. These results indicated that this TCR-transgenic mouse of H-2q background contains both classes of selecting MHC ligands for the transgenic TCR simultaneously. Further genetic analyses altering the gene dosage and combinations of selecting MHCs suggested novel asymmetric effects of class I and class II MHC on the positive selection of thymocytes. Implications of these observations in CD4+/CD8+ lineage commitment are discussed.  相似文献   

20.
We have used the intra-thymic transfer system to investigate the population dynamics of thymocyte and mature T cell subsets in the absence of continuing precursor input from the bone marrow. We have followed the development and life span of CD4+ and CD8+ thymocyte subsets and mature peripheral T cells from intra-thymically injected adult or fetal CD4-8- thymic precursors. Both precursor types proliferated, differentiated, and exported to peripheral lymphoid tissues alpha beta-TCR+CD4+8- and CD4-8+ progeny which formed a stable, long-lived component of the peripheral T cell pool. The production of phenotypically mature thymocytes and peripheral T cells occurred more rapidly from fetal CD4-8- precursors. CD4+8-:CD4-8+ ratios among peripheral progeny of intra-thymically-injected CD4-8- precursors were initially normal, but they steadily declined among progeny of the fetal precursors. Thus, there appear to be differences in the life span and/or proliferative capacity of mature T cells derived from embryonic vs adult progenitors. In addition to the predominant CD4+8- and CD4-8+ subsets of peripheral T cells, a minor (1 to 20%) population of Thy-1+CD3+4-8- T cells was identified among peripheral progeny of intra-thymically-injected CD4-8- thymocytes, as well as in lymph nodes of unmanipulated animals. A total of 20 to 34% of this subset expressed V beta 8+ TCR and the majority were CD5hi, Pgp-1+, and J11d-. The function and specificity of this newly identified population of thymically derived peripheral T cells remains to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号