首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During an annual period the bacterial biomass (epifluorescence) and secondary production (methyl-3H-thymidine incorporation), as well as biomass (Chlorophyll) and algal primary production (incorporation of NaH14CO3) were studied in the Embalse del Río III Reservoir, Argentina. The relations between these variables and their responses to seasonal changes in water temperature were analyzed. A close relationship in seasonal patterns of algal primary production and bacterial secondary production was observed, with the estimated rates of bacterial production similar to that obtained by other authors in eutrophic lakes. Bacterial production was 17 to 46% of the primary production, thus, at 60% assimilation efficiency, the bacterioplankton would consume 28 to 77 % of the total fixed carbon. Seasonal trends in algal primary production and bacterial secondary production were mainly affected by temperature.  相似文献   

2.
Acid spring effluents are often covered with mats of the eucaryotic phycocyanin-containing alga. Cyanidium caldarium. The primary bacterial component of such mats is an acidophilic strain of Bacillus coagulans, and the primary fungal component is Dactylaria gallopava. Because of the limited species diversity, C. caldarium mats appeared to be an excellent system for studying algal excretion and various microbial interactions in nature. From 2 to 6% of the NaH14CO3 taken up by natural or laboratory populations of the alga was excreted as 14C-labeled materials. The maximum excretion occurred at temperature, light, and pH values optimum for NaH14CO3 uptake. However, when excretion was expressed as a percentage of NaH14 CO3 uptake, a higher percentage of the radioactivity was excreted at nonoptimal conditions for NaH14CO3 uptake. Fungal biomass was directly proportional to algal density, but bacterial numbers varied widely and did not correlate with algal numbers. The bacterial and fungal components could be grown in mixed culture with either growing C. caldarium cultures or in an extract prepared, by healing algal cells.  相似文献   

3.
The relationship between heterotrophic bacteria and phytoplankton in the epilimnion (0–10 m) of hypertrophic Hartbeespoort Dam, South Africa, was examined by statistically analyzing three years of parallel measurements of heterotrophic bacterial activity (glucose uptake) and phytoplankton particulate and dissolved organic carbon production. Algal biomass ranged between 4.0 and 921.1 mg Chl a m-3 at the surface. Primary production varied between 69.5 and 3010.0 mg C m-2h-1 while algal production of dissolved organic carbon (EDOC) ranged from 2.5 to 219.2 mg C m-2h-1. Bacterial numbers reached a summer peak of 44.23 × 106 cells ml-1 in the first year and showed no depth variation. The maximum rate of glucose uptake, Vmax, reached a peak of 5.52 g C l-1h-1. Vmax, maximum glucose concentration (Kt + Sn) and glucose turnover time (Tt) were usually highest at the surface and decreased with depth concomitant with algal production. At the surface, Vmax was correlated to EDOC (r = 0.59, n = 67, p < 0.001) and primary production (r = 0.71, n = 70, p < 0.001). At 5 and 10 m, Vmax was correlated to integral euphotic zone (~ 4 m) algal production and bacterial numbers. Glucose turnover time was inversely related to integral algal production (r = -0.72, n = 70, p < 0.001) and less strongly to bacterial numbers. The data indicated that although bacterial numbers and biomass were low relative to algal biomass in this hypertrophic lake, the heterotrophic bacteria attained high rates of metabolic activity as a result of enhanced algal production of available organic carbon.  相似文献   

4.
High rate algal ponds (HRAPs) are shallow, paddlewheel-mixed open raceway ponds that are an efficient and cost-effective upgrade for the conventional wastewater treatment ponds used by communities and farms the world over. HRAPs provide improved natural disinfection and nutrient removal and can be further enhanced by carbon dioxide (CO2) addition to promote algal growth which is often carbon limited. This paper discusses the construction and operation of a 5-ha demonstration HRAP system treating primary settled wastewater at the Christchurch wastewater treatment plant, New Zealand. The system consisted of four 1.25-ha HRAPs that were constructed from an existing conventional pond. Algae were harvested from the HRAP effluent in specially designed settlers, which concentrated the algal/bacterial biomass to 1–2% organic solids for conversion to bio-crude oil following dewatering. Performance data from the first 15?months of HRAP operation (without CO2 addition) are presented. The four demonstration HRAPs had reasonable replication of both treatment performance and algal/bacterial productivity with similar annual average wastewater treatment efficiency (~50% removal of BOD5, ~87% removal of fBOD5, ~65% removal of ammoniacal-N, ~19% removal of dissolved reactive phosphorus and ~2 log removal of Escherichia coli), algal species composition and algal/bacterial biomass production (~8?g?m?2?day ?1 volatile suspended solids). These results were in good agreement with the results for pilot-scale HRAP without CO2 addition in New Zealand. This study provides further indication of the potential for energy efficient and effective wastewater treatment using HRAP, while biofuel conversion of the harvested algal bacterial biomass could provide a valuable niche distributed energy source for local communities.  相似文献   

5.
Primary and Bacterial Production in Two Dimictic Indiana Lakes   总被引:16,自引:12,他引:4       下载免费PDF全文
The relationship between primary and bacterial production in two dimictic Indiana lakes with different primary productivities was examined during the summer stratification period in 1982. Primary production rates were calculated from rates of H14CO3 incorporation by natural samples, and bacterial production was calculated from rates of [3H-methyl]thymidine incorporation by natural samples. Both vertical and seasonal distributions of bacterial production in the more productive lake (Little Crooked Lake) were strongly influenced by primary production. A lag of about 2 weeks between a burst in primary production and the subsequent response in bacterial production was observed. The vertical distribution of bacterial production in the water column of the less productive lake (Crooked Lake) was determined by the vertical distribution of primary production, but no clear relationship between seasonal maxima of primary and bacterial production in this lake was observed. High rates of bacterial production in Crooked Lake during May indicate the importance of allochthonous carbon washed in by spring rains. Bacterial production accounted for 30.6 and 31.8% of total (primary plus bacterial) production in Crooked Lake and Little Crooked Lake, respectively, from April through October. High rates of bacterial production during late September and October were observed in both lakes. Calculation of the fraction of bacterial production supported by phytoplankton excretion implies an important role for other mechanisms of supplying carbon, such as phytoplankton autolysis. Several factors affecting the calculation of bacterial production from the thymidine incorporation rates in these lakes were examined.  相似文献   

6.
The bacterioplankton of Lake Taihu,China: abundance,biomass, and production   总被引:6,自引:0,他引:6  
Abundance, biomass and production of pelagic bacteria were examined over one year at monthly sampling intervals across a trophic profile in Meiliang Bay, Lake Taihu. With the lowest density in the open lake, the bacterial abundance showed a clear trend in relation to trophic status. The carbon content per cell was higher in autumn and winter, and the opposite was true for bacterial biomass. Bacterial 3[H]-TdR and 14[C]-Leu incorporation rates, cell production, turnover times and carbon production varied during the annual cycle at different sites. The ratio of bacterial production to primary production was high, independently of the method used, indicates that the microbial food web in Lake Taihu is an important component of the total food web of the lake and dominated by external inputs. Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users  相似文献   

7.
Bacterial metabolism of algal extracellular carbon   总被引:3,自引:3,他引:0  
Measurements of microbial utilization of extracellular organic carbon (EOC) released by phytoplankton commonly consider only EOC fractions subject to rapid uptake. Questions remain whether other EOC fractions are metabolized, what portion is labile, and with what assimilation efficiency this carbon substrate is utilized. 14C-EOC was prepared by incubation of the natural mixed planktonic community from an oligotrophic lake with H14CO3 in the light. 14C-EOC which was not rapidly removed by heterotrophs remained in solution and was isolated by filtration. This residual EOC was inoculated with lake microheterotrophs in laboratory microcosms, and utilization kinetics were determined through long-term assays of cumulative 14CO2 production. Time-courses for 14CO2 production were consistent for all assays and were well described by a deterministic mixed-order degradation model. On twelve sampling occasions, from 29% to 76% of residual 14C-EOC was labile to further metabolism by lake heterotrophs. First-order rate constants for EOC utilization showed a mode of 0.05 to 0.15 per day. From 33% to 78% of gross 14C-EOC uptake was respired (mean 50%), indicating appreciable return of algal EOC to the pelagic food web as microbial biomass.Contribution No. 596, W. K. Kellogg Biological Station, Michigan State University.  相似文献   

8.
The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal cells shaped North Sea bacterial community composition and enhanced bacterial substrate assimilation. Infected algal cultures of Phaeocystis globosa grown in coastal North Sea water contained gamma- and alphaproteobacterial phylotypes that were distinct from those in the non-infected control cultures 5 h after infection. The gammaproteobacterial population at this time mainly consisted of Alteromonas sp. cells that were attached to the infected but still intact host cells. Nano-scale secondary-ion mass spectrometry (nanoSIMS) showed ∼20% transfer of organic matter derived from the infected 13C- and 15N-labelled P. globosa cells to Alteromonas sp. cells. Subsequent, viral lysis of P. globosa resulted in the formation of aggregates that were densely colonised by bacteria. Aggregate dissolution was observed after 2 days, which we attribute to bacteriophage-induced lysis of the attached bacteria. Isotope mass spectrometry analysis showed that 40% of the particulate 13C-organic carbon from the infected P. globosa culture was remineralized to dissolved inorganic carbon after 7 days. These findings reveal a novel role of viruses in the leakage or excretion of algal biomass upon infection, which provides an additional ecological niche for specific bacterial populations and potentially redirects carbon availability.  相似文献   

9.
Carbon exchange by the terrestrial biosphere is thought to have changed since pre-industrial times in response to increasing concentrations of atmospheric CO2 and variations (anomalies) in inter-annual air temperatures. However, the magnitude of this response, particularly that of various ecosystem types (biomes), is uncertain. Terrestrial carbon models can be used to estimate the direction and size of the terrestrial responses expected, providing that these models have a reasonable theoretical base. We formulated a general model of ecosystem carbon fluxes by linking a process-based canopy photosynthesis model to the Rothamsted soil carbon model for biomes that are not significantly affected by water limitation. The difference between net primary production (NPP) and heterotrophic soil respiration (Rh) represents net ecosystem production (NEP). The model includes (i) multiple compartments for carbon storage in vegetation and soil organic matter, (ii) the effects of seasonal changes in environmental parameters on annual NEP, and (iii) the effects of inter-annual temperature variations on annual NEP. Past, present and projected changes in atmospheric CO2 concentration and surface air temperature (at different latitudes) were analysed for their effects on annual NEP in tundra, boreal forest and humid tropical forest biomes. In all three biomes, annual NEP was predicted to increase with CO2 concentration but to decrease with warming. As CO2 concentrations and temperatures rise, the positive carbon gains through increased NPP are often outweighed by losses through increased Rh, particularly at high latitudes where global warming has been (and is expected to be) most severe. We calculated that, several times during the past 140 years, both the tundra and boreal forest biomes have switched between being carbon sources (annual NEP negative) and being carbon sinks (annual NEP positive). Most recently, significant warming at high latitudes during 1988 and 1990 caused the tundra and boreal forests to be net carbon sources. Humid tropical forests generally have been a carbon sink since 1960. These modelled responses of the various biomes are in agreement with other estimates from either field measurements or geochemical models. Under projected CO2 and temperature increases, the tundra and boreal forests will emit increasingly more carbon to the atmosphere while the humid tropical forest will continue to store carbon. Our analyses also indicate that the relative increase in the seasonal amplitude of the accumulated NEP within a year is about 0–14% year?1 for boreal forests and 0–23% year?1 in the tundra between 1960 and 1990.  相似文献   

10.
The potential of algal–bacterial symbiosis for the removal of carbon, nitrogen and phosphorus from five agro-industrial wastewaters was investigated in enclosed batch biodegradation tests using a mixed microalgae consortium and activated sludge as model microorganisms. The target wastewaters were obtained from potato processing (PW), fish processing (FW), animal feed production (MW), coffee manufacturing (CW) and yeast production (YW). The initial C/N/P ratio of the agro-industrial wastewater was correlated with its biodegradability. Thus, the highest removals of total organic carbon (TOC) and nitrogen were recorded in two fold diluted FW (64?±?2 % and 85?±?1 %, respectively), while the maximum P-PO4 3? removal achieved was 89?±?1 % in undiluted PW. The biodegradable TOC was in most cases the limiting component in the treatment of the wastewaters evaluated. This study confirmed the potential of coupling carbon and nutrient recovery from agro-industrial effluents with the production of a valuable algal–bacterial biomass, despite their poor biodegradability.  相似文献   

11.
The present research was conducted to simultaneously optimize biogas upgrading and carbon and nutrient removal from centrates in a 180-L high-rate algal pond interconnected to an external CO2 absorption unit. Different biogas and centrate supply strategies were assessed to increase biomass lipid content. Results showed 99 % CO2 removal efficiencies from simulated biogas at liquid recirculation rates in the absorption column of 9.9 m3 m?2 h?1, concomitant with nitrogen and phosphorus removal efficiencies of 100 and 82 %, respectively, using a 1:70 diluted centrate at a hydraulic retention time of 7 days. The lipid content of the harvested algal–bacterial biomass remained low (2.9–11.2 %) regardless of the operational conditions, with no particular trend over time. The good settling characteristics of the algal–bacterial flocs resulted in harvesting efficiencies over 95 %, which represents a cost-effective alternative for algal biomass reutilization compared to conventional physical–chemical techniques. Finally, high microalgae biodiversity was found regardless of the operational conditions.  相似文献   

12.
Bacterial biomass, metabolic condition, and activity were measured over a 16-month period in the surface sediments of the following four field sites with differing dissolved organic matter regimes: a woodlot spring seep, a meadow spring seep, a second-order stream, and a third-order stream. Total bacterial biomass was measured by lipid phosphate and epifluorescence microscopic counts (EMC), and viable biomass was measured by 14C most probable number, EMC with 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride reduction, and ATP. Bacterial metabolic condition was determined from the percentage of respiring cells, poly-β-hydroxybutyrate concentrations, and adenylate energy charge. Activity measures included 14C-lipid synthesis, 32P-phospholipid synthesis, the rate of uptake of algal lysate dissolved organic carbon, and respiration, from which biosynthesis was calculated (dissolved organic carbon uptake corrected for respiration). Total bacterial biomass (from EMC) ranged from 0.012 to 0.354 μg of C/mg of dry sediment and was usually lowest in the third-order stream. The percentage of cells respiring was less than 25% at all sites, indicating that most bacteria were dormant or dead. Adenylate energy charge was measured only in the third-order stream and was uniformly low. Poly-β-hydroxybutyrate concentrations were greater in the woodlot spring seep than in the second- and third-order streams. Uptake of algal lysate dissolved organic carbon ranged from undetectable levels to 166 mg of C · m−2 · h−1. Little community respiration could be attributed to algal lysate metabolism. Phospholipid synthesis ranged from 0.006 to 0.354 pmol · mg of dry sediment−1 · h−1. Phospholipid synthesis rates were used to estimate bacterial turnover at the study sites. An estimated 375 bacterial generations per year were produced in the woodlot spring seep, and 67 per year were produced in the third-order stream.  相似文献   

13.
1. The carbon budgets and assimilation efficiencies (AEs) of adults and juveniles of Daphnia magna were quantified using 14C as a tracer. Animals were fed pure Chlamydomonas reinhardtii or Scenedesmus obliquus at different food concentrations. Carbon AEs (46–70%) were comparable at food concentrations of 0.03–0.30 mg C L?1 for both algal species, but decreased to 34–49% when the food concentration further increased by 10‐fold. The carbon AEs were significantly and negatively correlated with the food level. 2. During the postdigestive period, partitioning of ingested carbon into different compartments including excretion, respiration and egestion was not influenced by the food species and life stage. There was a negative correlation between respiration (as % of total loss) and food concentration and a positive correlation between egestion (as % of total loss) and food concentration. Dissolved organic carbon (DOC) and CO2 accounted for 55–72% and 9–37%, respectively, of the total carbon loss from juveniles fed both algal diets. For adults, DOC and CO2 contributed to 44–64% and 20–47% of the total carbon loss, respectively. Particulate organic carbon (POC) was a minor pathway for the overall carbon loss. 3. The turnover and release budget of structural carbon (as moults and neonate reproduction) were further evaluated in long‐term experiments at different algal concentrations. Food concentration did not affect the carbon efflux or the carbon allocation into different physiological compartments except for respiration. Juveniles had twofold lower carbon turnover rate (0.12–0.16 day?1) than those of the adults (0.32–0.35 day?1). In adults, comparable carbon was allocated into DOC (35–42%) and reproduction (27–35%), which were the dominant routes for carbon loss. For the juveniles, DOC accounted for 42–64% of the total carbon loss. 4. About 21–38% of the total DOC released by adults and juveniles was associated with the high molecular weight organic carbon fraction (>5 kDa). Our results show that carbon was mainly lost by D. magna in the form of DOC during assimilation process as well as from the structural materials. Reproduction or maternal transfer was another major drain of body carbon for adult D. magna.  相似文献   

14.
Summary The gas exchange and water relations of two Sonoran Desert plants was measured throughout a 12-month period. Seasonal photosynthesis patterns of both plants followed the seasonal variation in plant water potential. Ambrosia deltoidea, a drought-deciduous shrub, is mainly winter-spring active since maximum photosynthesis rates of 38 mg CO2 dm-2 h-1 were measured at this time. This plant is characterized by marked seasonal variations in plant water potential, and was deciduous for approximately 120 days when plant water potential was below-50 bars. Olneya tesota, a non-riparian microphyllous tree, is evergreen and photosynthetically active throughout the entire year, although demonstrating maximum photosynthesis rates of 12 mg CO2 dm-2 h-1 in spring and summer. The deep-rooted tree species maintains a favorable year-round water balance since minimum plant water potentials were seldom below-33 bars. The two species maintain a relatively high water use efficiency throughout the year, despite the high evaporative gradient characteristic of the Sonoran Desert.The leaves are the major site for carbon assimilation, contributing 87 and 81% of the annual carbon gain for the shrub and tree species, respectively. Above-ground gross primary production throughout the 12-month period was estimated solely from the leaf 14CO2 assimilation studies. This production estimate was compared to above-ground net primary production determined by the harvest method. For both plant species gross production was interpreted to exceed net production by nearly a three-fold difference. On a per plant basis gross production was estimated to be 1.14 and 7.42 kg dry wt plant-1 yr-1 for A. deltoidea and O. tesota. The large difference between net and gross production is probably related to year-round utilization of carbon.This research was supported by National Science Foundation Grant BMS 74-02671-A04 through the U.S./I.B.P. Desert Biome at Utah State University  相似文献   

15.
The productivity and ecological role of benthos in man-made Lake Kariba was assessed through the use of P/B-ratios and by measuring the metabolism (respiration, N and P excretion) of the most abundant mussel species (Aspatharia wahlbergi, Corbicula africana and Caelatura mossambicensis) in laboratory experiments. For A. wahlbergi also filtration rate was estimated.The annual production of benthos for the populated 0–12 m interval was estimated at 11.0 g m –2 yr–1 (shellfree dry weight) of which mussels contributed for 8.81 g (80%), snails 2.16 g (20%) and insects 0.03 g (0.3%) respectively. The most important mussel species in the lake were Caelatura mossambicensis (4.97 g m–2 yr–1) and Corbicula africana (3.33 g). The dominant snail species was Melanoides tuberculata (1.63 g). For the total lake, also including deeper unpopulated bottoms, the annual production of benthos was 2.70 g m–2 yr–1 (shell-free dry weight).Respiration and excretion varied with temperature displaying a bell-shaped relationship. Metabolic rates in Aspatharia wahlbergi increased about 5× between 16.5 °C and the maximum at 34.0 °C and then decreased again at 39.0 °C, when the mussels showed signs of severe stress. Metabolism in Corbicula africana had a lower optimum with fairly constant activity between 18.6 and 29.2 °C, rapidly decreasing above this temperature.The average respiration, nutrient excretion and water filtration rates for mussels in Lake Kariba at 25.2 °C were estimated to about 0.6 mg O2 85 µg NH4–N, 1.5 µg PO4–P and 0.51 water filtered h–1 g–1 shellfree dry weight. This gives that a volume corresponding to about the total epilimnion of the lake is filtered by the mussels annually. Further, mussels can be estimated to remineralise % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaac+% cacaaI0aaaaa!3A2B!\[1/4\] of the total load of phosphate, and 8 times the total load of nitrogen every year. The population needs 3.5 × 104 tons of organic carbon for its maintainance, which indicates that about 5% of the annual phytoplankton production is channeled through mussels. We conclude that the mussels, rather than being an important food source for fish, seem to play a large role in the nutrient dynamics of Lake Kariba.  相似文献   

16.
1. The objective was to identify the factors driving spatial and temporal variation in annual production (PA) and turnover (production/biomass) ratio (P/BA) of resident brown trout Salmo trutta in tributaries of the Rio Esva (Cantabrian Mountains, Asturias, north‐western Spain). We examined annual production (total production of all age‐classes over a year) (PA) and turnover (P/BA) ratios, in relation to year‐class production (production over the entire life time of a year‐class) (PT) and turnover (P/BT) ratio, over 14 years at a total of 12 sites along the length of four contrasting tributaries. In addition, we explored whether the importance of recruitment and site depth for spatial and temporal variations in year‐class production (PT), elucidated in previous studies, extends to annual production. 2. Large spatial (among sites) and temporal (among years) variation in annual production (range 1.9–40.3 g m?2 per year) and P/BA ratio (range 0.76–2.4 per year) typified these populations, values reported here including all the variation reported globally for salmonids streams inhabited by one or several species. 3. Despite substantial differences among streams and sites in all production attributes, when all data were pooled, annual (PA) and year‐class production (PT) and annual (P/BA) and year‐class P/BT ratios were tightly linked. Annual (PA) and year‐class production (PT) were similar but not identical, i.e. PT = 0.94 PA, whereas the P/BT ratios were 4 + P/BA ratios. 4. Recruitment (Rc) and mean annual density (NA) were major density‐dependent drivers of production and their relationships were described by simple mathematical models. While year‐class production (PT) was determined (R2 = 70.1%) by recruitment (Rc), annual production (PA) was determined (R2 = 60.3%) by mean annual density (NA). In turn, variation in recruitment explained R2 = 55.2% of variation in year‐class P/BT ratios, the latter attaining an asymptote at P/BT = 6 at progressively higher levels of recruitment. Similarly, variations in mean annual density (NA) explained R2 = 52.1% of variation in annual P/BA, the latter reaching an asymptote at P/BA = 2.1. This explained why P/BT is equal to P/BA plus the number of year‐classes at high but not at low densities. 5. Site depth was a major determinant of spatial (among sites) variation in production attributes. All these attributes described two‐phase trajectories with site depth, reaching a maximum at sites of intermediate depth and declining at shallower and deeper sites. As a consequence, at sites where recruitment and mean annual density reached minimum or maximum values, annual (PA) and year‐class production (PT) and annual (P/BA) and year‐class P/BT ratios also reached minimum and maximum values.  相似文献   

17.
Chlorella pyrenoidosa was labelled by 14CO2 and the nature and amount of excreted organic compounds in nutrient media of different osmotic pressure were determined after a 24 h period. The total rate of excretion of organic bound 14C was about 4 μg 14C per mg harvested algal dry matter or 1% of the total 14C content of the algae at the beginning of the excretion period. The main compounds found in the excretions were unidentified substances with a molecular weight higher than 700, amino acids, organic acids and sugars. The osmotic pressure of the nutrient medium did not affect the total amount of the organic excretions. However, the excreted amounts of some specific compounds differed in respect to the osmotic conditions of the nutrient medium.  相似文献   

18.
SUMMARY.
  • 1 Phytoplankton primary production and biomass were compared with bacterial secondary production estimated by means of frequency of dividing cells (FDC) in eutrophic Lake Tystrup. Denmark.
  • 2 In the upper part of the photic zone, bacterial secondary production constituted 12% of the carbon fixed by the phytoplankton. In vertical profiles, bacterial secondary production ranged from 7.6% (early spring) to 121% (during August) of the carbon fixed by the algae.
  • 3 A close relationship was found between occurrence and activity of bacteria and algae, suggesting that released organic products are of primary importance to the bacteria.
  • 4 The annual phytoplankton primary production was estimated as 227 g C m-2 compared to 102 g C m-2 assimilated by the bacteria, so 45% of the carbon fixed by the phytoplankton went through pelagic bacteria.
  相似文献   

19.
Hydrolysis of natural dissolved organic phosphorus (DOP) in three hardwater lakes of different trophic level was calculated from kinetic data of phosphatase activity (PA) in different size fractions. DOP as well as kinetics of PA were determined every fortnight in depth profiles during the year 1990. 60% of DOP was assumed to be suitable substrate for phosphatases. The rate of hydrolysis increased markedly with higher trophic level. Average hydrolysis rate of DOP in polytrophic lake Thaler See was 3.26 nM P min–1 (6 µg P-PO4 l–1 h–1). In oligotrophic Lake Herrensee, dissolved phosphatases were responsible for more than half of the total hydrolysis. In the other two lakes, bacterial and algal surface PA dominated hydrolysis in changing parts depending on kinetics and DOP concentration. The regeneration rate of phosphate by PA was compared to phosphorus (P) excretion rate of zooplankton. Excretion was calculated from zooplankton data and excretion equations from the literature. In oligotrophic Lake Herrensee, excretion by zooplankton recycled in average 18% of the phosphate amount which was hydrolysed from DOP by PA. With higher trophic level, relevance of P excretion from zooplankton decreased drastically.  相似文献   

20.
Bacterioplankton numbers, biomasses, and productivities, as well as chlorophyll a concentrations and phytoplankton productivities, were assayed from 1 March 1984 to 12 August 1985 through a 250-m-deep seawater column in Howe Sound, a temperate fjord-sound on the southern coast of British Columbia, Canada. Primary production during this 18-month period was 845 g of C m−2. Bacterial production was assayed over this same period as 193 g of C m−2 (thymidine incorporation) and 77 g of C m−2 (frequency of dividing cells). Bacterial productivities per cubic meter were usually greater in the euphotic zone than in deeper aphotic water, but when integrated through the water column, approximately half of the bacterial production occurred in the deeper aphotic portion. Bacterial production occurred throughout the year, although at reduced rates in late fall and early winter; primary production almost ceased during late fall and early winter. Because of this heterotrophic bacterioplankton production was a very large portion of the microbial (bacterial plus phyto-plankton) production at this time. In mid-summer bacterial production was a small proportion of the microbial production. Because of this asynchrony in peaks and troughs of bacterial and phytoplankton production through the year, data comparison is best done over an annual cycle. On this basis the bacterial production in the Howe Sound water column was between 23 and 9% of the phytoplankton production when a bacterial C to biovolume ratio of 0.107 pg of C μm−3 was assumed; the corresponding values were 64 and 29% when a ratio of 0.300 pg of bacterial C μm−3 was assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号