首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recA protein (RecA) promotes DNA pairing and strand exchange optimally in the presence of single-stranded binding protein (SSB). Under these conditions, 3' homologous ends are essential for stable joint molecule formation between linear single-stranded DNA (ssDNA) and supercoiled DNA (i.e. 3' ends are 50-60 times more reactive than 5' ends). Linear ssDNAs with homology at the 5' end do not participate in pairing. In the absence of SSB, the strand exchange reaction is less efficient; however, linear ssDNAs with 3' end homology are still 5- to 10-fold more reactive than those with 5' end homology. The preference for a 3' homologous end in the absence of SSB suggests that this is an intrinsic property of RecA-promoted strand exchange. The preferential reactivity of 3' homologous ends is likely to be a consequence of the polarity of polymerization of RecA on ssDNA. Specifically, since RecA polymerizes in the 5'----3' direction, 3' ends are more likely to be coated with RecA and, hence, will be more reactive than 5' ends.  相似文献   

2.
When the recA protein (RecA) of Escherichia coli promotes strand exchange between single-stranded DNA (ssDNA) circles and linear double-stranded DNAs (dsDNA) with complementary 5' or 3' ends a polarity is observed. This property of RecA depends on ATP hydrolysis and the ssDNA that is displaced in the reaction since no polarity is observed in the presence of the non-hydrolyzable ATP analog, ATP gamma S, or in the presence of single-strand specific exonucleases. Based on these results a model is presented in which both the 5' and 3' complementary ends of the linear dsDNA initiate pairing with the ssDNA circle but only one end remains stably paired. According to this model, the association/dissociation of RecA in the 5' to 3' direction on the displaced strand determines the polarity of strand exchange by favoring or blocking its reinvasion into the newly formed dsDNA. Reinvasion is favored when the displaced strand is coated with RecA whereas it is blocked when it lacks RecA, remains covered by single-stranded DNA binding protein or is removed by a single-strand specific exonuclease. The requirement for ATP hydrolysis is explained if the binding of RecA to the displaced strand occurs via the dissociation and/or transfer of RecA, two functions that depend on ATP hydrolysis. The energy for strand exchange derives from the higher binding constant of RecA for the newly formed dsDNA as compared with that for ssDNA and not from ATP hydrolysis.  相似文献   

3.
Adenovirus (Ad) virions contain a 55-kDa terminal protein covalently linked to both 5'-ends of the linear duplex DNA genome. The origin of DNA replication is contained within the terminal 50 base pair of the inverted terminal repeats. In the accompanying paper (Kenny, M. K., Balogh, L. A., and Hurwitz, J. (1988) J. Biol. Chem. 263, 9801-9808), it was demonstrated that synthetic oligonucleotide templates which contain the Ad origin, but lack the 55-kDa terminal protein, can serve as templates for the initiation of Ad DNA replication. Partially duplex oligonucleotides that lacked up to 14 nucleotides from the 5'-end of the nontemplate (displaced) strand supported initiation as much as 20-fold more efficiently than fully duplex oligonucleotides. The removal of 18 nucleotides or more from the 5'-end of the displaced strand resulted in a sharp decrease in the ability of the DNA templates to support initiation. The poor template efficiency of certain DNAs could be explained by their inability to bind nuclear factor I. The initiation efficiency observed with other DNAs correlated with their ability to bind the preterminal protein-Ad DNA polymerase complex. At low concentrations of the Ad DNA-binding protein, protein-primed initiation was also observed on single-stranded DNAs. The single-stranded template strand of the Ad origin was at least 5-20-fold better at supporting initiation than other single-stranded DNAs. These findings suggest a model in which the 3'-end of the template strand is rendered single-stranded as a prerequisite for initiation of Ad DNA replication.  相似文献   

4.
The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction.  相似文献   

5.
B J Rao  B Jwang  M Dutreix 《Biochimie》1991,73(4):363-370
During the directional strand exchange that is promoted by RecA protein between linear duplex DNA and circular single-stranded DNA, a triple-stranded DNA intermediate was formed and persisted even after the completion of strand transfer followed by deproteinization. In the deproteinized three-stranded DNA complexes, the sequestered linear third strand resisted digestion by E coli exonuclease I. In relation to polarity of strand exchange which defines the proximal and distal ends of the duplex DNA, when homology was restricted to the distal region of duplex substrate, the joints formed efficiently and were stable even upon complete deproteinization. Enzymatic probing of deproteinized distal joints with nuclease P1 revealed that the joints consist of long three-stranded structures that at neutral pH lack significant single-stranded character in any of the three strands. Instead of circular single-stranded DNA, when a linear single strand is recombined with partially homologous duplex DNA, in the presence of SSB, the formation of homologous joints by RecA protein, is significantly more efficient at distal end than at the proximal. Taken together, these observations suggest that with any single-stranded DNA (circular or linear), RecA protein efficiently promotes the formation of distal joints, from which, however, authentic strand exchange may not occur. Moreover, these joints might represent an intermediate which is trapped into a stable triple stranded state.  相似文献   

6.
E. coil RecA protein and topolsomerase I, acting on superhelical DNA and circular single strands in the presence of ATP and Mg2+, topologically link single-stranded molecules to one another, and single-stranded molecules to duplex DNA. When super-helical DNA is relaxed by prior incubation with topoisomerase, it is a poor substrate for catenation. Extensive homology stimulates the catenation of circular single-stranded DNA and superhelical DNA, whereas little reaction occurs between these forms of the closely related DNAs of phages φX174 and G4, indicating that, in conjunction with topoisomerase I, RecA protein can discriminate perfect or nearly perfect homology from a high degree of relatedness. Circular single-stranded G4 DNA reacts with superhelical DNA of a chimeric phage, M13Goril, to form catenanes, at least half of which survive heating at 80°C following restriction cleavage in the M13 region, but few of which survive following restriction cleavage in the G4 region. Electron microscopic examination of catenated molecules cleaved in the M13 region reveals that in most cases the single-stranded G4 DNA is joined to the linear duplex M13(G4) DNA in the homologous G4 region. The junction frequently has the appearance of a D loop, with an extent equivalent to 100 or more bp. We conclude that a significant fraction of catenanes were hemicatenanes, in which the single-stranded circle was topologically linked, probably by multiple turns, to its complementary strand in the duplex DNA. These observations support the previous conclusion that RecA protein can pair a single strand with its complementary strand in duplex DNA in a side-by-side fashion without a free end in any of the three strands.  相似文献   

7.
An effective family shuffling method using single-stranded DNA   总被引:10,自引:0,他引:10  
Kikuchi M  Ohnishi K  Harayama S 《Gene》2000,243(1-2):133-137
Family shuffling, which is one of the most powerful techniques for in vitro protein evolution, always involves the problem of reassembling the gene fragments into parental gene sequences, because such a process prevents the formation of chimeric sequences. In order to improve the efficiency of hybrid formation in family shuffling, single-stranded DNAs (ssDNAs) were used as templates. The ssDNAs of two catechol 2,3-dioxygenase genes, nahH and xylE, were prepared, the xylE strand being complementary to the nahH strand. When these ssDNAs were digested by DNase I and reassembled, chimeric genes were obtained at a rate of 14%, which was much higher than the rate of less than 1% obtained by shuffling with double-stranded DNAs. Chimeric catechol 2,3-dioxygenases that were more thermally stable than the parental enzymes, XylE and NahH, were obtained by this ssDNA-based DNA shuffling.  相似文献   

8.
A proteolyzed bacteriophage (phage) might release its DNA into the environment. Here, we define the recombination functions required to resurrect an infective lytic phage from inactive environmental viral DNA in naturally competent Bacillus subtilis cells. Using phage SPP1 DNA, a model that accounts for the obtained data is proposed (i) the DNA uptake apparatus takes up environmental SPP1 DNA, fragments it, and incorporates into the cytosol different linear single-stranded (ss) DNA molecules shorter than genome-length; (ii) the SsbA-DprA mediator loads RecA onto any fragmented linear SPP1 ssDNA, but negative modulators (RecX and RecU) promote a net RecA disassembly from these ssDNAs not homologous to the host genome; (iii) single strand annealing (SSA) proteins, DprA and RecO, anneal the SsbA- or SsbB-coated complementary strands, yielding tailed SPP1 duplex intermediates; (iv) RecA polymerized on these tailed intermediates invades a homologous region in another incomplete molecule, and in concert with RecD2 helicase, reconstitutes a complete linear phage genome with redundant regions at the ends of the molecule; and (v) DprA, RecO or viral G35P SSA, may catalyze the annealing of these terminally redundant regions, alone or with the help of an exonuclease, to produce a circular unit-length duplex viral genome ready to initiate replication.  相似文献   

9.
The repair of potentially lethal DNA double-stranded breaks (DSBs) by homologous recombination requires processing of the broken DNA into a resected DNA duplex with a protruding 3'-single-stranded DNA (ssDNA) tail. Accordingly, the canonical models for DSB repair require invasion of an intact homologous DNA template by the 3'-end of the ssDNA, a characteristic that the bacterial pairing protein RecA possesses. Unexpectedly, we find that for the eukaryotic homolog, Rad51 protein, the 5'-end of ssDNA is more invasive than the 3'-end. This pairing bias is unaffected by Rad52, Rad54 or Rad55-57 proteins. However, further investigation reveals that, in contrast to RecA protein, the preferred DNA substrate for Rad51 protein is not ssDNA but rather dsDNA with ssDNA tails. This important distinction permits the Rad51 proteins to promote DNA strand invasion using either 3'- or 5'-ends with similar efficiency.  相似文献   

10.
We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.  相似文献   

11.
RecA protein is essential for homologous recombination and the repair of DNA double-strand breaks in Escherichia coli. The protein binds DNA to form nucleoprotein filaments that promote joint molecule formation and strand exchange in vitro. RecA polymerises on ssDNA in the 5'-3' direction and catalyses strand exchange and branch migration with a 5'-3' polarity. It has been reported previously, using D-loop assays, in which ssDNA (containing a heterologous block at one end) invades supercoiled duplex DNA that 3'-homologous ends are reactive, whereas 5'-ends are inactive. This polarity bias was thought to be due to the polarity of RecA filament formation, which results in the 3'-ends being coated in RecA, whereas 5'-ends remain naked. Using a range of duplex substrates containing ssDNA tails of various lengths and polarities, we now demonstrate that when no heterologous block is imposed, 5'-ends are just as reactive as 3'-ends. Moreover, using short-tailed substrates, we find that 5'-ends form more stable D-loops than 3'-ends. This bias may be a consequence of the instability of short 3'-joints. With more physiological substrates containing long ssDNA tails, we find that RecA shows no intrinsic preference for 5' or 3'-ends and that both form D-loop complexes with high efficiency.  相似文献   

12.
We have evaluated the efficacy of RecA, a prokaryotic protein involved with homologous recombination, to direct site-specific mutagenesis in zebrafish embryos. For this we coinjected a vector containing a mutated enhanced green fluorescent protein (EGFP) gene plus 236-nucleotide corrective single-stranded DNAs coated with RecA into 1-cell zebrafish embryos. Twenty-hours after fertilization, about 5% to 20% of injected embryos showed EGFP expression in 1 or more cells when RecA-coated corrective DNAs were used, but not when RecA was omitted. Mutated EGFP genes with 1-bp insertions or deletions were inefficiently activated, whereas those with 7-bp insertions were activated about 4-fold more efficiently. RecA-coated template strand had a higher efficiency than its complementary strand in activation of EGFP expression. Prior irradiation of the embryos with UV light enhanced RecA-mediated restoration of gene activity, suggesting that the effects we observed were augmented by one or more factors of zebrafish DNA repair systems. Current address (Ying Yang): First Hospital of Beijing University, Beijing 100034, P.R. China. Current address (Christopher D. Kaufman): Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, D-13092 Berlin, Germany. Current address (Perry B. Hackett): Discovery Genomics, Inc. 614 McKinley Pl. NE Minneapolis, MN 55413  相似文献   

13.
RecA protein will catalyze the in vitro pairing of homologous DNA molecules. To further explore the events involved in the search for homology, we have applied a nitrocellulose filter binding assay to follow pairing, and a sedimentation assay to follow the generation of aggregates (termed coaggregates) formed between RecA-complexed single-stranded (ss) DNA and double stranded (ds) DNA. Electron microscopy (EM) was used to visualize the structures involved. RecA protein promoted the pairing of circular M13 ssDNA and linear M13mp7 dsDNA efficiently in the absence of coaggregates. Indeed, pairing of homologous ss- and dsDNAs involved coaggregate formation only if the dsDNA was circular. For DNAs containing only a few hundred base-pairs of homology, for example pUC7 dsDNA and M13mp7 ssDNA, pairing and joint formation was observed if the dsDNA was superhelical but not if it was topologically relaxed or linear with the homology internal to an end of the dsDNA. The effect of non-covalently attached heterologous dsDNA on the RecA-promoted joining of M13 ssDNA and linear M13mp7 dsDNA (with non-M13 sequences at both ends) was found to depend on the topology and concentration of the heterologous DNA. A tenfold excess of superhelical pBR322 DNA strongly inhibited pairing. However, addition of relaxed or linear pBR322 DNA to the pairing reaction had little effect. As seen by EM, superhelical pBR322 DNA inhibited joint formation by excluding the homologous dsDNA form the coaggregates. EM also revealed heterologous DNA interactions presumably involved in the search for homology. Here the use of EM has provided a direct visualization of the form and architecture of coaggregates revealing a dense interweaving of presynaptic filaments and dsDNA.  相似文献   

14.
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments.  相似文献   

15.
Dermić D 《Genetics》2006,172(4):2057-2069
Heterotrimeric RecBCD enzyme unwinds and resects a DNA duplex containing blunt double-stranded ends and directs loading of the strand-exchange protein RecA onto the unwound 3'-ending strand, thereby initiating the majority of recombination in wild-type Escherichia coli. When the enzyme lacks its RecD subunit, the resulting RecBC enzyme, active in recD mutants, is recombination proficient although it has only helicase and RecA loading activity and is not a nuclease. However, E. coli encodes for several other exonucleases that digest double-stranded and single-stranded DNA and thus might act in consort with the RecBC enzyme to efficiently promote recombination reactions. To test this hypothesis, I inactivated multiple exonucleases (i.e., exonuclease I, exonuclease X, exonuclease VII, RecJ, and SbcCD) in recD derivatives of the wild-type and nuclease-deficient recB1067 strain and assessed the ability of the resultant mutants to maintain cell viability and to promote DNA repair and homologous recombination. A complex pattern of overlapping and sometimes competing activities of multiple exonucleases in recD mutants was thus revealed. These exonucleases were shown to be essential for cell viability, DNA repair (of UV- and gamma-induced lesions), and homologous recombination (during Hfr conjugation and P1 transduction), which are dependent on the RecBC enzyme. A model for donor DNA processing in recD transconjugants and transductants was proposed.  相似文献   

16.
Gamper HB  Nulf CJ  Corey DR  Kmiec EB 《Biochemistry》2003,42(9):2643-2655
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPgammaS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2'-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPgammaS.  相似文献   

17.
RecA first forms a filament on single-stranded DNA (ssDNA), thereby forming the first site for ssDNA binding and, simultaneously, the second site for binding double-stranded DNA (dsDNA). Then, the nucleoprotein filament interacts with dsDNA, although it can bind ssDNA as well. The resulting complex searches for homology sites and performs strand exchange between homologous DNA molecules. The interaction of various ssDNAs with the second DNA-recognizing site of RecA was studied by gradually increasing the structural complexity of the DNA ligand. Recognizing ssDNA with the second site, the protein interacts with each nucleotide of the ligand, forming contacts with both internucleotide phosphate groups and nitrogen bases. Pyrimidine oligonucleotides d(pC) n and d(pT) n interacted with the second site of the RecA filament more efficiently than d(pA) n did. This was due to a more efficient interaction of the RecA filament with the 5′-terminal nucleotide of pyrimidinic DNA and to the difference in specific conformational changes of the nucleoprotein filament in the presence of purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition at the first and second DNA-binding sites of the filament showed that, at n > 10, d(pC) n and d(pN) n were bound at the second site less tightly than at the first site. At n > 20, the second site bound d(pA) n more efficiently than the first site. The difference in d(pN) n affinity for the first and second sites increased monotonically with increasing n. Possible mechanisms of a RecA-dependent search for homology and DNA strand exchange are discussed.  相似文献   

18.
M C Whitby  R G Lloyd 《The EMBO journal》1995,14(14):3302-3310
RecG protein is required for normal levels of recombination and DNA repair in Escherichia coli. This 76 kDa polypeptide is a junction-specific DNA helicase that acts post-synaptically to drive branch migration of Holliday junction intermediates made by RecA during the strand exchange stage of recombination. To gain further insight into the role of RecG, we studied its activity on three-strand intermediates formed by RecA between circular single-stranded and linear duplex DNAs. Once RecA is removed, RecG drives branch migration of these intermediates by a junction-targeted activity that depends on hydrolysis of ATP. RuvAB has a similar activity. However, when RecG is added to a RecA strand exchange reaction it severely reduces the accumulation of joint molecule intermediates by driving branch migration of junctions in the reverse direction to that catalysed by RecA strand exchange. In comparison, RuvAB has little effect on the reaction. We discuss how reverse branch migration by RecG, which acts counter of the 5'-->3' polarity of RecA binding and strand exchange, could serve to promote or abort the early stages of recombination, depending on the orientation of the single DNA strand initiating the exchange relative to the adjacent duplex region.  相似文献   

19.
The helical filament formed by RecA protein on single-stranded DNA plays an important role in homologous recombination and pairs with a complementary single strand or homologous duplex DNA. The RecA nucleoprotein filament also recognizes an identical single strand. The chimeric protein, RecAc38, forms a nucleoprotein filament that recognizes a complementary strand but is defective in recognition of duplex DNA, and is associated with phenotypic defects in repair and recombination. As described here, RecAc38 nucleoprotein filament is also defective in recognition of an identical strand, either when the filament has within it a single strand or duplex DNA. A model that postulates three DNA binding sites rationalizes these observations and suggests that the third binding site mediates non-Watson-Crick interactions that are instrumental in recognition of homology in duplex DNA.  相似文献   

20.
RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced (+) strand of the duplex within a 15-base pair region of the heterology/homology junction. Breakage also requires recA protein, ATP hydrolysis, and homologous sequences 3' to the heterology. Although the location of the breaks and the observed requirements clearly indicate a major role for recA protein in this phenomenon, the molecular mechanism is not yet clear. The breakage may reflect a DNA structure and/or some form of structural stress within the DNA during recA protein-mediated DNA pairing which either exposes the DNA at this precise position to the action of a contaminating nuclease or induces a direct mechanical break. We also find that when heterology is located at the 3' end of the linear duplex, strand exchange is halted (without DNA breakage) about 500 base pairs from the homology/heterology junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号