首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The in vivo effect of vitamin D on (Ca2+ + Mg2+)-ATPase activity was examined in a plasma membrane fraction of rat circulating mononuclear cells (MPM). Although there was no significant difference in the ATPase activities in red blood cell ghosts, (Ca2+ + Mg2+)-ATPase activity in MPM was significantly higher (p less than 0.05) in long-term vitamin D3-replete rats (100 IU/day for 6 months) than that in vitamin D-deplete rats (for 6 months). In rats maintained on vitamin D-deficient diets for 5-7 weeks, in vivo administration of either vitamin D3, 2,000 IU orally, 5 days prior to killing or 1,25-dihydroxyvitamin D3, 2.4 nmol, intraperitoneally, 24 h prior to killing failed to show any significant effect on (Ca2+ + Mg2+)-ATPase activity in MPM. (Ca2+ + Mg2+)-ATPase activity in MPM from rats maintained on vitamin D-deficient diet with high calcium content (1.8%) was significantly higher (p less than 0.05) than that from rats maintained on vitamin D-deficient diet with low calcium content (0.3%). Moreover, in vitro addition of vitamin D3 metabolites did not show any effect on (Ca2+ + Mg2+)-ATPase activity in MPM. These data suggest that decreased (Ca2+ + Mg2+)-ATPase activity in MPM from long-term vitamin D-deplete rats resulted from an adaptation to low extracellular calcium rather than vitamin D depletion.  相似文献   

2.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

3.
The effect of vitamin D administration on cyclic AMP metabolism in the kidney was examined in rats fed a vitamin D-deficient, low Ca diet. The renal cyclic AMP level in vitamin D-deficient rats was higher than that in normal rats fed a laboratory chow, and in significantly decreased after thyroparathyroidectomy. Parathyroid hormone administered in vitro and in vivo did not cause as great a cyclic AMP response in vitamin D-deficient rats as that seen in the normal rats. The response to calcitonin, however, was not blunted in vitamin D-deficient animals. The blunted cyclic AMP accumulation in the kidney seemed to be related to formation, rather than degradation, of the nucleotide. The rats fed the low Ca diet were still hypocalcemic even after supplementation of the diet with a daily dose of either 0.625 μg of vitamin D-3 for 3 weeks or 2.5 μg of vitamin D-3 for the last 3 days. Vitamin D supplementation did not influence either the basal level or parathyroid hormone-stimulated increase of cyclic AMP in the kidney. On the contrary, when animals maintained on the vitamin D-deficient, low Ca diet were switched to the vitamin D-deficient, high Ca diet containing lactose for several days, they recovered normocalcemia and a normal response. These results suggest that the blunted cyclic AMP response to parathyroid hormone in vitamin D deficiency is due to hypocalcemia or associated secondary hyperparathyroidism and not due to deficiency of vitamin D action.  相似文献   

4.
We have used a specific cDNA to the mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28k) to study the regulation of the expression of this mRNA in rat kidney and brain. The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and dietary alteration on genomic expression were characterized by both Northern and slot blot analysis. Administration of 1,25-(OH)2D3 for 7 days (25 ng/day) to vitamin D-deficient rats resulted in a marked increase in renal calbindin-DmRNA, renal calbindin, and serum calcium. When vitamin D-deficient rats were supplemented for 10 days with calcium (3% calcium gluconate in the water, 2% calcium in the diet) serum calcium levels were similar to the levels observed in the 1,25-(OH)2D3-treated rats. However, in the calcium-supplemented rats the levels of renal calbindin and renal calbindin mRNA were similar to the levels observed in the vitamin D-deficient rats, suggesting that calcium alone without vitamin D does not regulate renal calbindin gene expression in vivo. In dietary alteration studies in vitamin D-replete rats, renal calbindin protein and mRNA increased 2.5-fold in rats fed diets low in phosphate providing evidence that in the rat the nutritional induction of calbindin is accompanied by a corresponding alteration in the concentration of its specific mRNA. Under low dietary calcium conditions, the levels of renal calbindin protein and mRNA were similar to the levels observed in control rats, although 1,25-(OH)2D3 serum levels were markedly elevated, suggesting that factors in addition to 1,25-(OH)2D3 can modulate renal calbindin gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Abstract Cardiovascular disease is a frequent complication inducing mortality in chronic kidney disease (CKD) patients, which can be determined by both traditional risk factors and non-traditional risk factors such as malnutrition and oxidative stress. This study aimed to investigate the role of oxidative stress in uremia-induced cardiopathy in an experimental CKD model. CKD was induced in Sprague-Dawley rats by a 4-week diet supplemented in adenine, calcium and phosphorous and depleted in proteins. CKD was associated with a 3-fold increase in superoxide anion production from the NADPH oxidase in the left ventricle, but the maximal activity of mitochondrial respiratory chain complexes was not different. Although manganese mitochondrial SOD activity decreased, total SOD activity was not affected and catalase or GPx activities were increased, strengthening the major role of NADPH oxidase in superoxide anion output. Superoxide anion output was associated with enhanced expression of osteopontin (×7.7) and accumulation of pro-collagen type I (×3.7). To conclude, the increased activity of NADPH oxidase during CKD is associated with protein modifications which could activate a pathway leading to cardiac remodelling.  相似文献   

6.
The administration of an aqueous extract of the leaves from Solanum malacoxylon to vitamin D-deficient rats fed a normal calcium, normal phosphorus diet markedly increased serum calcium concentration within 48 hours. The Solanum malacoxylon extract also stimulated intestinal calcium transport in the vitamin D-deficient rat but was without effect on the mobilization of calcium from bone. The extract from 100 mg of dry Solanum malacoxylon leaves was more effective than 25 units of vitamin D given daily to vitamin D-deficient rats in stimulating intestinal calcium transport but its effect was not additive to that of the vitamin D. The results demonstrate that the action of Solanum malacoxylon is independent of vitamin D and, although it can substitute for vitamin D in the stimulation of intestinal calcium transport activity, it cannot substitute for vitamin D in the mobilization of calcium from bone.  相似文献   

7.
The regulatory effect of calcium added in vitro on 25-hydroxycholecalciferol metabolism was studied in kidney mitochondria and in renal tubules from vitamin D-deficient chicks. The addition of calcium (0.05 – 0.2 mm) to mitochondrial suspensions prepared with calcium-chelating agents caused a marked and dose-related stimulation of 1-hydroxylation. A sharp decline in the activity was induced by higher concentrations of calcium (0.3 – 0.7 mm). A similar but less striking biphasic effect of calcium on 1-hydroxylation was observed in mitochondria prepared in the absence of calcium chelating agents. The effect of calcium was not a consequence of accelerated mitochondrial translocation of either exogenous NADP or Mg2+ but was related to mitochondrial calcium content. The addition of inhibitors of the calcium uptake, i.e., LaCl3 or ruthenium red, or a calcium ionophore (A 23187) significantly inhibited the calcium-induced stimulation of the 1-hydroxylation reaction. Similar calcium effects were also observed in renal tubules isolated from intact, but not from parathyroidectomized, vitamin D-deficient chicks. These data strongly suggest that mitochondrial calcium plays an important role in the regulation of 1-hydroxylase activity in kidney.  相似文献   

8.
Rats fed a diet deficient in vitamin D were found to exhibit a refractory cyclic AMP response of kidney slices to parathyroid hormone and a marked decrease in membrane parathyroid hormone-dependent adenylate cyclase activity. Both the characteristic calcium deficiency (hypocalcemia) and secondary elevation of circulating parathyroid hormone appeared before the first noticeable decrease in hormone-dependent enzyme activity. After repletion of D-deficient rats with vitamin D2, we found that serum calcium and parathyroid hormone were both restored to normal levels before the depressed enzyme response to the hormone was reversed. Moreover, infusion of parathyroid hormone into vitamin D-replete rats led to a marked reduction in parathyroid hormone-dependent adenylate cyclase activity, which was partly restored to control level 3 hours after discontinuing the hormone infusion. Taken as a whole, this study suggests that the elevated endogenous parathyroid hormone in the vitamin D-deficient rat is involved in the “down-regulation” of renal cyclic AMP responsiveness to the hormone. However, these experiments do not rule out the possibility that calcium deficiency and/or vitamin D per se participate in the regulation of the renal cyclic AMP response to parathyroid hormone.  相似文献   

9.
The possible involvement of plasma calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the regulation of the concentration of kidney calcium-binding protein (CaBP) was investigated. Chicks were fed diets varying in Ca2+ and P, with or without vitamin D. CaBP and 1,25(OH)2D3 were determined by competitive binding assays. A significant correlation between plasma and kidney 1,25(OH)2D3 was found, the linear regression equation of best-fit was plasma 1,25(OH)2D3 = 0.14 + 1.56 kidney 1,25(OH)2D3. In the vitamin D-fed chicks, kidney CaBP varied independently of the circulating or organ level of 1,25(OH)2D3 (P greater than 0.05), but was lower in the vitamin D-deficient than in the vitamin D-fed birds. A significant correlation was observed between kidney CaBP and plasma calcium (Cap). The regression equations were CaBP = Cap/(85.57-4.00 Cap) (R = 0.845) and CaBP = 0.0558 + 0.0404 Cap (R = 0.749), for vitamin D-treated and vitamin D-deficient chicks, respectively. The results suggest that the concentration of kidney CaBP is modulated by plasma calcium, but one or more of the vitamin D metabolites may be required for its synthesis.  相似文献   

10.
We hypothesized the vitamin D-deficient green iguanas with depleted calcium stores would seek to augment calcium intake by self-selection of a high calcium source. Eight green iguanas were offered free-choice ground oystershell in addition to their regular diet. Of these, two had not been exposed to ultraviolet (UV-B) radiation for > 5 years and were demonstrated to be vitamin D-deficient by low circulating levels of the principal vitamin D metabolite, calcidiol (25-hydroxy-cholecalciferol). The six others had been exposed to a UV-B emitting bulb for the previous 3 years and had high circulating calcidiol levels. Average daily food intake (expressed as dry matter per kg body mass) did not differ between the Low-D and High-D iguanas. The daily oystershell intake of the Low-D iguanas (0.02–0.03 g/kg) was lower than that of the High-D iguanas (0.06–0.70 g/kg), leading to a significant difference in calcium intake. The failure of iguanas to increase calcium intake in response to vitamin D-deficiency was puzzling and suggests that vitamin D, as a steroid hormone, may play some role in the expression of calcium appetite. Zoo Biol 16:201–207, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Administration of ovine-prolactin (O-PRL) stimulated Ca2+ uptake in isolated duodenal cells prepared from vitamin D-deficient rats. The time course of this effect was biphasic: uptake activity reached a peak in 2.5 hrs followed by a decrease at 5 hrs to original levels. This stimulatory effect of O-PRL was observed in vitamin D-deficient male, but not in female rats. This stimulatory effect was observed in 16- and 26-week old, but not 9 week old, animals. Increase in Ca2+ uptake in duodenal cells was not due to a decrease in intracellular Ca2+ efflux. We measured serum Ca concentration in vitamin D-deficient female rats and found that serum Ca increased in D-deficient female rats between 16 and 52 weeks whereas a minimal increase was observed in D-deficient male rats. Although prolactin was shown to stimulate duodenal Ca2+ uptake, it appears that the source of the increase in levels of serum Ca in D-deficient female rats was not derived from an increase in Ca2+ uptake by prolactin in duodenum. The increase in serum calcium with time may explain why female D-deficient rats survive longer then male.  相似文献   

12.
Serum and renal clearance values of phosphate and calcium were measured and compared in 4 week-old vitamin D-deficient and vitamin D-replete chickens (Gallus gallus). D-deficient chicks had significantly lower body weights and serum calcium values; however, their renal functions were not different from D-replete controls. Serum calcium values in D-deficient birds did not change in response to parathyroid hormone (PTH) administration; however, they did drop significantly in response to parathyroidectomy (PTX). Serum phosphate values of D-deficient birds, but not D-replete birds, rose significantly after PTX. Clearance of phosphate is known to increase after administration of PTH. This conspicuous effect was absent in PTH-injected vitamin D-deficient chickens. PTX caused the excretion of phosphate to drop in both D-deficient and D-replete birds to near zero. Conversely, PTX of both D-deficient and D-replete chickens stimulated the excretion of more calcium than in controls. Calcium loading elevates the fractional excretion of calcium in both D-deficient and D-replete birds. It also causes a decrease in phosphate excretion in both groups, presumably by inhibiting the secretion of PTH. PTH administration to D-replete, calcium-loaded birds caused increased phosphate excretion (as it did in normal controls), an effect that was not seen in similarly treated D-deficient birds. Therefore, most renal functions studied after calcium loading, PTH administration, or PTX are not altered by vitamin D deficiency in the chicken. The major significant finding is that vitamin D-deficient chickens do not excrete increased amounts of phosphate in response to PTH stimulus.  相似文献   

13.
Using a cDNA probe for rat renal 24-hydroxylase, expression of its mRNA was compared in the rat kidney and intestine. Vitamin D-deficient rats received a single injection of 1 alpha,25-dihydroxyvitamin D3. Expression of 24-hydroxylase mRNA was first detected in the kidney at 3-h post-injection and increased thereafter. Similarly, 24-hydroxylase mRNA was expressed in the intestine after 1 alpha,25-dihydroxyvitamin D3 injection. However, the dose level of 1 alpha,25-dihydroxyvitamin D3 required to induce the intestinal 24-hydroxylase mRNA expression was only 1/100 the amount required to induce renal 24-hydroxylase mRNA. Induction of intestinal 24-hydroxylase mRNA expression by 1 alpha,25-dihydroxyvitamin D3 was far more rapid than that of renal 24-hydroxylase mRNA. Thyroparathyroidectomy shortened the time required to induce expression of renal, but not intestinal, 24-hydroxylase mRNA. Administration of either parathyroid hormone or cAMP to vitamin D-deficient rats greatly reduced the expression of 24-hydroxylase mRNA in the kidney but not in the intestine. When rats were fed a vitamin D-repleted diet containing 0.7% (adequate) or 0.03% (low) calcium for 2 weeks, intestinal expression of 24-hydroxylase mRNA could be induced only in the low calcium group. In contrast, renal mRNA expression was preferentially stimulated in the adequate calcium group. These results clearly demonstrate that the expression of 24-hydroxylase mRNA is down-regulated by parathyroid hormone in the kidney but not in the intestine.  相似文献   

14.
The vitamin D-dependent intestinal calcium binding protein gene is predominantly expressed in the intestine. In this report we have examined the possibility that methylation of the gene might play a role in its tissue-specific expression employing genomic Southern analysis. None of the Hpa II and Hha I sites examined by the indicated probes in and around the gene were found to be methylated in the intestine, kidney and liver. No change in the methylation of these sites was detected in response to 1,25-dihydroxy-vitamin D3 administration to vitamin D-deficient rats under conditions which stimulate the expression of the gene. These results indicate that the rat intestinal calcium binding protein gene is not methylated in these tissues, at the indicated sites and, therefore, methylation seems not to be involved in the regulation of this gene's expression.  相似文献   

15.
Cyclic AMP-dependent protein kinase activity in supernatants of homogenates of kidneys from vitamin D-deficient chicks is decreased to 70% of the level measured in kidneys from normal chicks. Activity was restored to normal by oral administration of vitamin D or 1,25-dihydroxyvitamin D3 for 1 or 2 weeks. Both isozymes of cAMP-dependent protein kinase were reduced to the same extent by vitamin D deficiency. The decreased enzyme activity could not be accounted for by a shift to the particulate fraction nor by an increased requirement for cyclic AMP. A heat stable, trichloroacetic acid-precipitable, trypsin-labile inhibitor of protein kinase activity was identified and quantitated in kidneys from vitamin D-deficient chicks (16 to 26 units/mg of protein) and from those given vitamin D (2 to 6 units/mg of protein). The measured difference in inhibitor levels could not be attributed to differential stability in kidney homogenates from vitamin D-deficient or -repleted chicks. The observed increase in inhibitor level with vitamin D deficiency is not sufficient to account for the decrease in cyclic AMP-dependent protein kinase activity, suggesting that the total amount of this enzyme activity is reduced in vitamin D deficiency.  相似文献   

16.
Previous work in our laboratory showed that the osteopetrotic (op/op) mouse possesses a vitamin D-independent mechanism of intestinal calcium absorption. This study was performed in an effort to further characterize the mechanism. The vitamin D-deficient op/op mouse absorbed calcium faster than either a vitamin D-deficient or 1, 25-dihydroxyvitamin D(3)-supplemented wild-type mouse. This increased rate of absorption was not found at concentrations of calcium that result in diffusional calcium absorption. Thus, vitamin D-deficient op/op mice had intestinal calcium absorption similar to that of vitamin D-deficient wild-type littermates when increasing levels of calcium were administered. Also, mRNA and protein levels of calbindin-D9k were similar in vitamin D-deficient wild-type and op/op mice as well as in wild-type and op/op mice treated with 1, 25-dihydroxyvitamin D(3). Therefore, the mechanism of vitamin D-independent intestinal calcium absorption in the op/op mouse is distinct from vitamin D-dependent intestinal calcium absorption.  相似文献   

17.
The effects of vitamin E (deficiency or supplementation) on the non-specific immune system in rainbow trout, Oncorhynchus mykiss, were evaluated. Rainbow trout were fed daily a semi-purified diet supplemented with vitamin E at 0, 28 and 295 mg x kg(-1) of diet. After 80 days of experimental feeding, the phagocytic function (respiratory burst evaluated by the CL response, phagocytosis) from gut leucocytes and head kidney enriched macrophages was measured; head kidney cell pinocytosis and serum lysozyme activity were also analysed. The results showed that some phagocyte functions were influenced by dietary vitamin E. When fish were fed the high dietary dose of vitamin E an enhancement of phagocytosis was found, but only significantly for the leucocytes isolated from the gut of rainbow trout; moreover, an impaired response was also observed in the fish fed no vitamin E for 80 days. However, no significant differences were noticed on the oxidative burst (CL) response of both gut and head kidney cells according to the dietary dose of vitamin E. Pinocytosis evaluated on head kidney cells was not influenced by dietary vitamin E. Fish fed vitamin E at 295 mg x kg(-1) had a lower serum lysozyme activity than those fed with vitamin E at 28 mg x kg(-1) and the fish fed no vitamin E for 80 days had an impaired activity. Thus, the present results demonstrate that altered dietary levels of vitamin E modulates the phagocytic functions of gut leucocytes in rainbow trout; moreover, the vitamin E diet effect seems to be greater on the local intestinal response as compared to systemic (head kidney). Taken together, this study confirms the crucial role of gut phagocytes in mucosal non-lymphoid defences in fish.  相似文献   

18.
Vitamin E suppresses the hypercholesterolemia-induced cardiac oxidative stress. The objectives were to investigate: if vitamin E regresses the hypercholesterolemia-induced oxidative stress in hearts and if regression is associated with decreases in the antioxidant reserve. The rabbits were assigned to 4 groups: I, regular diet (2-months); II, 0.25 % cholesterol diet (2-months); III, 0.25 % cholesterol diet (2-months) followed by regular diet (2-months); and IV, 0.25 % cholesterol diet (2-months) followed by regular diet with vitamin E (2-months). Blood samples were collected before and at the end of protocol for the measurement of total cholesterol (TC). Hearts were removed at the end of the protocol under anesthesia for the assessment of oxidative stress parameters, malondialdehyde (MDA), and tissue chemiluminescent (CL) activity. High cholesterol diet increased the serum levels of TC, and regular diet with or without vitamin E reduced the TC levels to a similar extent. The MDA content of the heart in groups I, II, III, and IV were 0.074 ± 0.015, 0.234 ± 0.016, 0.183 ± 0.028 and 0.169 ± 0.016 nmol/mg protein, respectively. Regular diet following high cholesterol diet reduced the MDA levels (0.234 ± 0.016 vs. 0.183 ± 0.028 nmol/mg protein but vitamin E did not reduce the MDA levels. The cardiac-CL activities were similar in groups’ I, II, and III (30.11 ± 0.7 × 106, 32.9 ± 1.43, and 37.92 ± 8.35 × 106 RLU/mg protein). The activity decreased in group IV, suggesting that vitamin E increased the antioxidant reserve while lowering serum cholesterol did not increase antioxidant reserve. In conclusion, hypercholesterolemia increases cardiac oxidative stress and regular diet regresses hypercholesterolemia-induced oxidative stress but vitamin E does not further regress hypercholesterolemia-induced cardiac oxidative stress. Vitamin E reduces oxidative stress in the heart tissue in spite of a decrease in CL activity (increase in antioxidant reserve).  相似文献   

19.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号