首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Calli of salt tolerant (Bhoora rata) and salt susceptible (GR11) rice varieties were cultured on Linsmaeir and Skoog’s medium containing LD50 concentration of NaCl (200 mM) and hydroxyproline (10 mM). Growth rate of callus and Na+, K+, Cl, Mg+2, and Ca+2 contents of the cultured rice tissues were determined at the end of 0, 2, 4 and 6 weeks of incubation. Hydroxyproline resistant calli of both rice varieties when cultured on Linsmaeir and Skoog’s medium containing both NaCl and hydroxyproline showed increased dry weight and enhanced intracellular levels of K+, Mg+2 and Ca+2. The accumulation of Na+ and Cl ions was less in the hydroxyproline resistant calli.  相似文献   

2.
Callus cultures from salt tolerant (CSR-10) and susceptible (Swarnadhan) varieties of Oryza sativa L. were established in Murashige and Skoog’s (MS) medium containing lethal concentrations (50 mM) of rubidium chloride (RbCl) as a selective agent. While 95–100% cells were viable in callus cultures grown without RbCl, viability was 75% in 50 mM RbCl selected cultures. Growth of RbCl selected calli in presence of salt was comparable to that of callus grown without it. Cells tolerant to RbCl showed more vacuoles and accumulated more K+ in comparison with their corresponding controls. Suspension cultures were established and uptake of 86Rb+ was measured at 10 and 20 min intervals, which revealed a linear relationship between the absorption of K+ and time. Callus cultures (560-day-old) tolerant to 50 mM RbCl regenerated shoots with 35–40% frequencies in both the varieties, but the same age-old callus grown in the medium devoid of RbCl did not show any organogenesis. Callus cultures that are tolerant to 50 mM RbCl when exposed to 25 mM LiCl, 50 mM NaCl, 50 mM KCl and 25 mM CsCl also exhibited cross tolerance in both the varieties. This is the first time that a callus line of rice resistant to RbCl was raised and shown to accumulate a major cation K+ and also an increased influx of it.  相似文献   

3.
The effects of NaCl on growth, contents of proteins and proline, and activities of catalase, peroxidase and polyphenol oxidase were investigated in seedlings and calli of Trigonella foenum-graecum L. and T. aphanoneura Rech. f. Seeds and hypocotyl explants were cultured on Murashige and Skoog medium supplemented with 0, 50, 100, 150 and 200 mM NaCl. Seed germination and the fresh and dry mass of the seedlings decreased significantly under salinity. In both species significant increases in protein content of seedlings over that of control were observed at 150 and 200 mM NaCl. Protein content in calli decreased at 200 mM NaCl over that of control. Protein content was higher in seedlings than in calli at all NaCl concentrations. Conversely, proline content was lower in seedlings than in calli at all the tested NaCl concentrations. NaCl caused changes in the activities of peroxidase, catalase and polyphenol oxidase in seedlings and calli.  相似文献   

4.
Proline content, ion accumulation, cell wall and soluble peroxidase activities were determined in control and salt-treated calli (150 nM NaCl) and whole plants (30 mM NaCl) of two rice cultivars (salt sensitive cv. IKP and salt tolerant cv. Aiwu). Under salinity, the highest accumulation of Na+, Cl? and proline occurred in calli, roots and younger leaves of cv. IKP, coupled with the highest decrease in K+ content; accumulations of Na+ and Cl? were restricted to older leaves in cv. Aiwu. Relative growth rates of calli and roots or shoots from both cultivars were not linked to peroxidase activities. High concentrations (1 M) of exogenously applied glycerol did not inhibitin vitro activities of soluble peroxidase extracted from control and salt-treated calli or plants. Conversely, 35–55% (in cv. IKP) or 60–80% (in cv. Aiwu) of soluble peroxidase activities were found in presence of isosmotic proline concentration. There were no differences between proline and glycerol effects onin vitro cell wall peroxidase activities.  相似文献   

5.
In vitro-grown cells of Sesuvium portulacastrum L., an important ‘salt accumulator’ mangrove associate, were incubated on a medium containing different levels of salt, including 0, 100, 200, or 400 mM NaCl, in order to evaluate biochemical, physiological, and growth responses. A significant decrease in callus growth, water status, and cell membrane damage was observed under salt stress. Osmotic adjustment was revealed by the accumulation of inorganic ions, such as sodium (Na+), and organic osmolytes (proline, glycine betaine, and total soluble sugars) in NaCl-treated calli compared to control. However, accretion of osmolytes and inorganic ions did not support growth of calli under NaCl stress conditions. The observed reduced growth rate in calli subjected to stress, up to 200 mM NaCl, was coupled with lower catalase and ascorbate peroxidase activities and with a significantly higher superoxide dismutase activity. These findings suggested that S. portulacastrum cell cultures exhibited higher osmotic adjustment to salt stress.  相似文献   

6.
Summary The response of plant cells to salt stress was studied on embryo derived calli of rice (Oryza sativa L.) in order to identify cellular phenotypes associated with the stress. The feasability of selecting salt tolerant callus and its subsequent regeneration to plants was also studied. Callus was grown on agar-solidified media containing 0%, 1% and 2% (w/v) NaCl for 24 days. Parameters such as fresh weight, dry weight, soluble protein and proline content were measured. The callus growth decreased markedly with increasing NaCl concentration in the medium. The proline content was enhanced several fold in salt stressed calli. A prolonged exposure of callus to the salt environment led to discolouration and arrested growth in the majority of the calli and only a small number of callus cells maintained healthy and stable growth. These variants were subcultured every three weeks for a period of four months onto medium containing 1% NaCl to identify tolerant lines. At the end of the third cell passage, the tolerant calli were transferred to regeneration medium to regenerate plants. The regeneration frequency in the salt-selected lines was enhanced when compared to unselected lines.  相似文献   

7.
Effects of salt and proline on Medicago sativa callus   总被引:2,自引:0,他引:2  
In this study, two cultivars of Medicago sativa (cv. Yazdi and cv. Hamedani) were used for callus production. Calluses were transferred to MS medium containing 0, 30, 60, 90, and 120 mM NaCl and 0, 5, 10 mM proline. After 4–5 weeks dry weight and intracellular free proline of the calluses were measured. The growth of callus in both cultivars decreased with increasing salt concentration. Addition of exogenous proline to the culture medium increased the dry weight and free proline content of callus. The difference between control and treated calluses with 10 mM exogenous proline in the medium was significant. The data obtained from experiments indicated that the responses of two Medicago cultivars was genotype dependent.  相似文献   

8.
Soil salinity affects plant growth and development by way of osmotic stress. Compatible osmolytes are potent osmoprotectants that playa role in counteracting the effect of saline stress. Proline biosynthesis and catabolism were investigated in both the control and salt stressed calli. Proline content showed a steady increase in the calli of all NaCI treated media. Calli on CaCl2 containing media did not show any increase in proline level compared to control calli. When the salinized media were supplemented with CaCl2 the proline level drastically increased compared to the corresponding calli grown on salt alone. Similarly, the activity of proline biosynthetic enzyme, pyrroline-5-carboxylate synthetase (P5CS) under salt stress was higher in NaCl + CaCl2 supplemented medium than the calli on the salinized medium alone. This suggested that the alleviation effect of calcium under saline condition was through modulation of the enzyme complexes that accelerate the rate of proline biosynthesis under salt stress. Similarly, the activity of proline degrading enzyme, proline oxidase was found to be lower in calli of all salt stressed media than control.  相似文献   

9.
The growth of Distichlis spicata suspension cultures in LS medium without NaCl was inhibited 54% by 2 mM proline. In medium containing 260 mM NaCl, 10 mM proline inhibited growth by only 22%. The uptake and metabolism of 10 mM L-[1-13C] proline was followed by 13C NMR and ninhydrin analyses of suspensions cultured in the presence of 0 or 260 mM NaCl. Uptake of 85 to 92% of the exogenous proline occurred within 72 h in all media. In 10 mM proline and no NaCl, cellular proline reached a maximm of 51.5 moles/g FW compared to 1.9 moles/g FW in suspensions not grown on proline. In medium containing 260 mM NaCl and proline, cellular proline reached 59–65 moles/g FW compared to 30–40 moles/g FW in controls grown without proline. The 13C-label in the proline-C1 was either retained in proline or disappeared, presumably released as carbon dioxide, by catabolism through the TCA cycle. Since no metabolite of 13C-proline was detected by NMR, proline was considered to be the molecule which inhibited the suspension culture growth.Abbreviations LS Linsmaier and Skoog medium - FW fresh weight - DW dry weight - P5C 1-pyrroline-5-carboxylate - TCA tricarboxylic acid cycle - FID free-induction-decay - NMR nuclear magnetic resonance spectroscopy - T1 spin-lattice relaxation time - NOE Nuclear Overhauser Effect.  相似文献   

10.
Proline (Pro) accumulation protects plant cell under abiotic stress. Hydroxyproline (Hyp) as selection agent is a toxic analog of proline and promotes Pro overaccumulation. In this study, Chardonnay calli were firstly irradiated with different dosages of 60Co and then cultured on a Hyp-added medium. Finally, some stable hydroxyproline-resistant (HR) calli were obtained. When calli were cultured on 4 mM Hyp medium for 7 days, intracellular Pro content of the HR calli was five times higher than that detected in the normal calli. The regeneration of HR calli into plantlets was much slower than that of normal ones. When cultured on woody plant medium (WPM) containing 10 mM NaCl for 14 days, HR plantlets still grew well with lower Pro than withered normal plantlets. qRT-PCR results of Pro biosynthesis-related genes in HR plantlets showed that three genes VvP5CS, VvOAT, and VvP5CDH were conducive for Pro accumulation. These results confirmed that HR plantlets acquired salt tolerance ability. We prospect that this procedure to obtain salt-tolerant plants may be valuable to breed programs and improve grapevine genotypes with increased tolerance to salt and other abiotic stresses.  相似文献   

11.
Stable callus cultures tolerant to NaCl (68 mM) were developed from salt-sensitive sugarcane cultivar CP65-357 by in vitro selection process. The accumulation of both inorganic (Na+, Cl and K+) and organic (proline and soluble sugars) solutes was determined in selected and non-selected calli after a NaCl shock in order to evaluate their implication in in vitro salt tolerance of the selected lines. Both salt-tolerant and non-selected calli showed similar relative fresh weight growth in the absence of NaCl. No growth reduction was observed in salt-tolerant calli while a significant reduction about 32% was observed in nonselected ones when both were cultivated on 68 mM NaCl. Accumulation of Na+ was similar in both salt-tolerant and non-selected calli in the presence of NaCl. Accumulation of Cl was lower in NaCl-tolerant than in non-selected calli while proline and soluble sugars were more accumulated in salt-tolerant than in non-selected calli when both were exposed to salt. K+ level decreased more severely in non-selected calli than in NaCl-tolerant ones after NaCl shock. The results indicated that K+ and Cl may play a key role in in vitro salt-tolerance in sugarcance cell lines obtained by in vitro selection and that organic solutes could contribute mainly to counteract the negative water potential of the outside medium.  相似文献   

12.
Summary Calli were induced from leaf expiants of aDactylis glomerata L. (orchardgrass) genotype which has a high capacity for somatic embryogenesis. After 7 months culture on SH medium containing NaCl, a line was selected which was tolerant to 200 mM NaCl. When both selected and nonselected calli were maintained for 56 days on media containing 0 to 300 mM NaCl, the selected line showed significantly higher regeneration capacity than nonselected calli when placed on media containing more than 50 mM NaCl. Ultrastructural features of control somatic embryos not exposed to the salt were compared to those from nonselected and selected embryos cultured on 200 mM NaCl medium. In the presence of NaCl there were changes in the appearance of cell walls and mitochondria, accumulation of lipids and a higher degree of vacuolation in cells of nonselected embryos compared to control and selected embryos.  相似文献   

13.
A standardized protocol was developed for the isolation of protoplasts from salt stressed primary, secondary and tertiary calli of the moderately salt tolerant indica rice land race Binnatoa. Calli were induced from mature seeds using MS2 callus induction media supplemented with 0, 50 and 100 mM NaCl. Subsequently cultures were maintained in the same medium for 1–2 passages with or without salt stress at the same concentrations. Large numbers of protoplasts (about 1.57–2.10×105/ml) with high viability were isolated from both control and salt stressed (50 and 100 mM NaCl) secondary and tertiary calli compared with the primary calli. The mannitol concentraion in the isolation and washing media was gradually increased, based on salt concentrations in which 13–15% was the most compatible for the control and 50 mM NaCl stressed calli and 17% for the 100 mM NaCl stressed calli. Isolated protoplasts at a density of 1–1.5×105/ml were cultured in MS115 medium by liquid culture or agarose droplets. The first division of protoplasts was observed 4–5 days after culture using either method. The agarose droplet method led to sustained division of protoplasts and microcolonies formed within 2 weeks. Although no microcalli or protocalli were observed the procedure described provides a method for the isolation of salt-stressed protoplasts in indica rice which avoids the need for laborious and time-consuming suspension cultures. Subsequent regeneration from calli, derived from these protoplasts is reported in a further publication.  相似文献   

14.
Callus cultures ofArachis hypogaea L. cv. JL-24 adapted to 200 mM NaCl (otherwise lethal to cells) were used for the study. Calli grew slowly when transferred to 250 mM NaCl, but the growth was enhanced when ABA was included in the medium. ABA induced increase in growth of callus was not accompanied by corresponding increase in internal free proline levels. 0.5 mM of CaCl2 ameliorated the negative effect of NaCl indicating that cells require a specific Ca2+/Na+ ratio for their growth. Proline content also increased at this ratio thereby suggesting that increase in growth at 0.5 mM Ca2+ may be due to an increase in proline content. However, exogenous proline did not increase the growth of callus (adapted to 200 mM), and higher concentrations even inhibited the growth. This shows that proline is not required for growth or adaptation of cells to salt stress, but is produced as a consequence of stress.  相似文献   

15.
Sodium chloride-tolerant calli were selected from leaf-derived embryogenic calli of Dactylis glomerata L. on agar solidified medium supplemented with 200 mM NaCl, a concentration lethal to non-selected calli. Growth characteristics, water relations and proline accumulation pattern were compared in selected and non-selected lines. The objective was to gain an understanding of the mechanism(s) of tolerance in the NaCl-tolerant line. Growth in the selected line, as expressed in terms of tolerance index (ratio of fresh wt. on NaCl medium:fresh wt. on NaCl free medium x 100), was greater than that of the non-selected line at all levels of NaCl between 50 and 300 mM. There was no significant difference in proline accumulation in the selected and non-selected lines. Maintenance of turgor by osmotic adjustment was observed in the non-selected line despite decreased growth. In contrast, the selected line lost either the need or the ability to adjust osmotically. There was little or no increase in symplastic osmolality in the selected line when exposed to NaCl. Presumably, selection was made for a salt-excluding tissue that has lost the ability to accumulate solutes and adjust turgor with NaCl stress.  相似文献   

16.
Summary Growth and physiological responses of date palm. Phoenix dactylifera L. cv. Barhee, callus to salinity stress were examined. Callus induced from shoot tips of offshoots was cultured on Murashige and Skoog medium supplemented with NaCl at concentrations ranging from 0 to 225 mM, in consective increments of 25 mM. Data obtained after 6 wk of exposure to salt have shown a significant increase in callus proliferation in response to 25 mM NaCl the lowest level tested, beyond which callus weight decreased. At 125 mM NaCl and higher, callus growth was nearly completely inhibited. Physiological studies on callus exposed to salt stress have shown an increase in proline accumulation in response to increased salinity. Proline accumulation was correlated to callus growth inhibition. Furthermore, increasing the concentration of NaCl in the culture medium generally resulted in a steady increase in Na+ and reduction in K+ concentrations. However, at 25 mM NaCl, the only level at which callus growth was significantly enhanced, an increase in K+ content was noted, in comparison to the NaCl free control. In response to increasing external NaCl level, the Na+/K+ ratio increased The Na+/K+ ratio was positively correlated to proline accumulation and hence callus growth inhibition. This study provides, an understanding of the response of date palm callus to salinity, which is important for future studies aimed at developing strategies for selecting and characterizing somaclonal variants tolerant to salt stress.  相似文献   

17.
Callus of the halophyte Nitraria tangutorum Bobr. was used to investigate proline metabolism and its signal regulation under salinity stress. Enhanced levels of proline and hydrogen peroxide (H2O2) were observed in calli exposed to salinity stress, and elevated levels of calcium (Ca) were detected in early responses to 75?mM NaCl treatment. Additionally, NaCl treatment induced significant elevation of ornithine-??-aminotransferase (OAT) activity, but notable decreases occurred in the activities of glutamyl kinase (GK) and proline dehydrogenase (PDH). H2O2 scavenger dimethylthiourea and pyruvate inhibited the accumulation of proline and the stimulation of OAT in salinity-stressed calli. Moreover, the utilization of Ca chelator EGTA and Ca channel blocker verapamil abolished the enhancement of proline level induced by 75?mM NaCl treatment for 3?days. These results suggest that the accumulation of proline is correlated to the increase of OAT activity and the decrease of PDH activity in response to salinity, and that elevated Ca signal during the early stage of NaCl treatment and the excitation of OAT activity resulting from the increase of H2O2 generation are essential for proline accumulation in salinity-stressed calli.  相似文献   

18.
Summary The effects of exogenously supplied proline and hydroxyproline on the potato (Solanum tuberosum) varieties L.T.8 and Desiree were studied using axillary bud cultures both in the presence and absence of 0.6% salt stress. In both varieties, the effects of exogenously supplied proline and hydroxyproline at 1.0 mM and 2.5 mM were less severe than 0.6% salt alone. At the same time, the accumulation of proline, protein, carbohydrates, sodium, and potassium were similar. However, when both the salt and proline/hydroxyproline were supplied, proline and hydroxyproline provided some measure of protection against salt stress. It is believed that increased proline levels in L.T.8 and increased carbohydrates in Desiree due to the presence of exogenously supplied proline/hydroxyproline were responsible for the additional protection against salt stress in the axillary bud cultures of these varieties.  相似文献   

19.
Mature seed-derived embryogenic calli of indica rice (Oryza sativa L. cv. PAU201) were induced on semisolid Murashige and Skoog medium supplemented with 2.5 mg dm−3 2,4-dichlorophenoxyacetic acid + 0.5 mg dm−3 kinetin + 560 mg dm−3 proline + 30 g dm−3 sucrose + 8 g dm−3 agar. Using OsglyII gene, out of 3180 calli bombarded, 32 plants were regenerated on medium containing hygromycin (30 mg dm−3). Histochemical GUS assay of the hygromycin selected calli revealed GUS expression in 50 % calli. Among the regenerants, 46.87 % were GUS positive. PCR analysis confirmed the presence of the transgene of 1 kb in 60 % of independent plants. Further, these plants have been grown to maturity in glasshouse. In vitro screening for salt tolerance showed increase in fresh mass of OsglyII putative transgenic calli (185.4 mg) as compared to control calli (84.2 mg) on 90 mM NaCl after 15 d. When exposed to 150 mM NaCl, OsglyII putative transgenic plantlets showed normal growth while the non-transgenic control plantlets turned yellow and finally did not survive.  相似文献   

20.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号