共查询到20条相似文献,搜索用时 0 毫秒
1.
Mi-Sook Lee Hoon-Sung Choi Seung-Hae Kwon Kyoji Morita Song Her 《The Journal of steroid biochemistry and molecular biology》2009,117(1-3):67-73
Mifepristone, also known as RU486, is a potent glucocorticoid receptor (GR) antagonist that inhibits GR-mediated transactivation. As an alternative to existing antidepressants, RU486 has been shown to rapidly reverse psychotic depression, most likely by blocking GR. Although a number of studies have demonstrated RU486-induced GR antagonism, the precise mechanism of action still remains unclear. To identify the GR domain involved in RU486-induced suppression, GR transactivation and nuclear translocation were examined using cells transfected with human GR (hGR), Guyanese squirrel monkey GR (gsmGR), and GR chimeras into COS-1 cells. RU486 showed a much more potent suppressive effect in gsmGR-expressing cells versus hGR-expressing cells, without significant cortisol- or RU486-induced changes in nuclear translocation. A GR chimera containing the gsmGR AF1 domain (amino acids 132–428) showed a marked decrease in luciferase activity, suggesting that this domain plays an important role in RU486-induced GR antagonism. Furthermore, fluorescence recovery after photobleaching (FRAP) analysis indicated that, in the presence of RU486, gsmGR AF1 domain contributes to GR mobility in living COS-1 cells. Taken together, these results demonstrate, for the first time, that the antagonistic effects of RU486 on GR transactivation involve a specific GR domain. 相似文献
2.
3.
4.
5.
6.
7.
8.
Lu C Shimaoka M Salas A Springer TA 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(6):3972-3978
We explore the binding sites for mAbs to the alpha I domain of the integrin alphaLbeta2 that can competitively inhibit, allosterically inhibit, or activate binding to the ligand ICAM-1. Ten mAbs, some of them clinically important, were mapped to species-specific residues. The results are interpreted with independent structures of the alphaL I domain determined in seven different crystal lattices and in solution, and which are present in three conformational states that differ in affinity for ligand. Six mAbs bind to adjacent regions of the beta1-alpha1 and alpha3-alpha4 loops, which show only small (mean, 0.8 angstroms; maximum, 1.8 angstroms) displacements among the eight I domain structures. Proximity to the ligand binding site and to noncontacting portions of the ICAM-1 molecule explains competitive inhibition by these mAbs. Three mAbs bind to a segment of seven residues in the beta5-alpha6 loop and alpha6 helix, in similar proximity to the ligand binding site, but on the side opposite from the beta1-alpha1/alpha3-alpha4 epitopes, and far from noncontacting portions of ICAM-1. These residues show large displacements among the eight structures in response to lattice contacts (mean, 3.6 angstroms; maximum, 9.4 angstroms), and movement of a buried Phe in the beta5-alpha6 loop is partially correlated with affinity change at the ligand binding site. Together with a lack of proximity to noncontacting portions of ICAM-1, these observations explain variation among this group of mAbs, which can either act as competitive or allosteric antagonists. One agonistic mAb binds distant from the ligand binding site of the I domain, to residues that show little movement (mean, 0.5 angstroms; maximum, 1.0 angstroms). Agonism by this mAb is thus likely to result from altering the orientation of the I domain with respect to other domains within an intact integrin alphaLbeta2 heterodimer. 相似文献
9.
Färnegårdh M Bonn T Sun S Ljunggren J Ahola H Wilhelmsson A Gustafsson JA Carlquist M 《The Journal of biological chemistry》2003,278(40):38821-38828
10.
11.
12.
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6 R) was constructed by computer-guided homology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hIL-6R with the ligand (hIL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hIL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cys121, Cys132, Cys165, Cys176; near membrane Cys residue: Cys193) or each double-site mutation of the five residues in WSEWS motif of hIL-6R (V106-P322) makes the corresponding spatial conformation of the pocket region block the linkage between hIL-6 R and hIL-6. However, the influence of the site-directed mutation of Cys211 and Cys277 individually on the conformation of the pocket region benefits the interaction between hIL-6R and hIL-6. Our study suggests that the predicted hydrophobic pocket in the 3-D model of hIL-6R (V106-P322) is the critical molecular basis for the binding of hIL-6R with its ligand, and the active pocket may be used as a target for designing small hIL-6R-inhibiting molecules in our further study. 相似文献
13.
The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head
Knight PJ Thirumurugan K Xu Y Wang F Kalverda AP Stafford WF Sellers JR Peckham M 《The Journal of biological chemistry》2005,280(41):34702-34708
Myosin 10 contains a region of predicted coiled coil 120 residues long. However, the highly charged nature and pattern of charges in the proximal 36 residues appear incompatible with coiled-coil formation. Circular dichroism, NMR, and analytical ultracentrifugation show that a synthesized peptide containing this region forms a stable single alpha-helix (SAH) domain in solution and does not dimerize to form a coiled coil even at millimolar concentrations. Additionally, electron microscopy of a recombinant myosin 10 containing the motor, the three calmodulin binding domains, and the full-length predicted coiled coil showed that it was mostly monomeric at physiological protein concentration. In dimers the molecules were joined only at their extreme distal ends, and no coiled-coil tail was visible. Furthermore, the neck lengths of both monomers and dimers were much longer than expected from the number of calmodulin binding domains. In contrast, micrographs of myosin 5 heavy meromyosin obtained under the same conditions clearly showed a coiled-coil tail, and the necks were the predicted length. Thus the predicted coiled coil of myosin 10 forms a novel elongated structure in which the proximal region is a SAH domain and the distal region is a SAH domain (or has an unknown extended structure) that dimerizes only at its end. Sequence comparisons show that similar structures may exist in the predicted coiled-coil domains of myosins 6 and 7a and MyoM and could function to increase the size of the working stroke. 相似文献
14.
Clément M Chamberland C Pérodin J Leduc R Guillemette G Escher E 《Journal of receptor and signal transduction research》2006,26(5-6):417-433
Several models of activation mechanisms were proposed for G protein-coupled receptors (GPCRs), yet no direct methods exist for their elucidation. The availability of constitutively active mutants has given an opportunity to study active receptor conformations within acceptable limits using models such as the angiotensin II type 1 (AT1)1 receptor mutant N111G-hAT1 which displays an important constitutive activity. Recently, by using methionine proximity assay, we showed for the hAT1 receptor that TMD III, VI, and VII form the ligand-binding pocket of the C-terminal amino acid of an antagonistic AngII analogue. In the present contribution, we investigated whether the same residues would also constitute the ligand-binding contacts in constitutively activated mutant (CAM) receptors. For this purpose, the same Met mutagenesis strategy was carried out on the N111G double mutants. Analysis of 43 receptors mutants in the N111G-hAT1 series, photolabeled and CNBr digested, showed that there were only subtle structural changes between the wt-receptor and its constitutively active form. 相似文献
15.
16.
Careful attention to technical issues preceded successful crystallography of the ligand-binding domain of estrogen receptor alpha (ERalpha) complexed with CP-336156, a nonsteroidal estrogen agonist/antagonist. An affinity column based on immobilized estradiol was prepared according to the scheme of Greene et al. (Greene, G. L., Nolan, C., Engler, J. P., and Jensen, E. V. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5115-5119). It was shown by X-ray crystallography that the major and less polar isomer of the affinity column precursor was 17alpha-((S)-2',3'-epoxyprop-1'-yl)estra-1,3,5(10)-triene-3,17beta-diol. This diastereomer was coupled to Thiopropyl Sepharose, with coupling monitored by observing loss of the phenolic absorption band of estradiol from the reaction supernatant, and gave an affinity matrix containing about 9 micromol of estradiol per milliliter of wet gel. Recombinant ERalpha ligand binding domain was selectively removed from E. coli cell lysate by binding to the column and was partly S-carboxymethylated by treatment with iodoacetic acid while bound to the column as described by previous workers. After being eluted from the column as a complex with drug, the receptor fragment was shown by mass spectrometry to be a mixture of differently modified forms. It was further S-carboxymethylated in solution, after which anion-exchange chromatography was used to isolate protein in which two of the four cysteine residues were S-carboxymethylated. This material, which afforded diffraction-quality crystals, was subjected to digestion with trypsin and peptide mapping analysis by HPLC coupled with mass spectrometry. For this experiment, the two previously unmodified cysteines were alkylated with 4-vinylpyridine to allow definitive identification. It was shown that Cys-417 and Cys-530 were S-carboxymethylated in the crystallized protein, while Cys-381 and Cys-447 remained unmodified. Close attention to such technical issues may be important in structural studies of other nuclear receptors, a very important class of potential drug targets. 相似文献
17.
18.
Lins L Couvineau A Rouyer-Fessard C Nicole P Maoret JJ Benhamed M Brasseur R Thomas A Laburthe M 《The Journal of biological chemistry》2001,276(13):10153-10160
The human VPAC(1) receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide belongs to the class II family of G-protein-coupled receptors with seven transmembrane segments. Like for all class II receptors, the extracellular N-terminal domain of the human VPAC(1) receptor plays a predominant role in peptide ligand recognition. To determine the three-dimensional structure of this N-terminal domain (residues 1-144), the Protein Data Bank (PDB) was screened for a homologous protein. A subdomain of yeast lipase B was found to have 27% sequence identity and 50% sequence homology with the N-terminal domain (8) of the VPAC(1) receptor together with a good alignment of the hydrophobic clusters. A model of the N-terminal domain of VPAC(1) receptor was thus constructed by homology. It indicated the presence of a putative signal sequence in the N-terminal extremity. Moreover, residues (Glu(36), Trp(67), Asp(68), Trp(73), and Gly(109)) which were shown to be crucial for VIP binding are gathered around a groove that is essentially negatively charged. New putatively important residues for VIP binding were suggested from the model analysis. Site-directed mutagenesis and stable transfection of mutants in CHO cells indicated that Pro(74), Pro(87), Phe(90), and Trp(110) are indeed important for VIP binding and activation of adenylyl cyclase activation. Combination of molecular modeling and directed mutagenesis provided the first partial three-dimensional structure of a VIP-binding domain, constituted of an electronegative groove with an outspanning tryptophan shell at one end, in the N-terminal extracellular region of the human VPAC(1) receptor. 相似文献
19.
20.