首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of constrictor prostanoid (CP) pathway inhibitors on vascular reactivity to vasopressin (VP) and phenylephrine (PE) were examined in thoracic aortas of male, female, and ovariectomized (OVX) female Sprague-Dawley rats. Maximal contractile response of control (Cont) aortas to VP was markedly higher in females (3,885 +/- 332 mg/mg ring wt) than in males (810 +/- 148 mg). Indomethacin (Indo; 10 microM) attenuated maximal response to VP in females (3,043 +/- 277 mg) but not in males. SQ-29,548 (SQ; 1 microM) attenuated maximal response to VP in females (3,042 +/- 290 mg) to a similar extent as Indo. Dazoxiben (Daz; 10 microM) alone had no effect, but Daz + SQ attenuated maximal contractile response to VP to a similar extent as SQ alone. Removal of the endothelium in female aortas attenuated contractile responses to VP in Cont aortas. OVX attenuated maximal contractile response to VP in Cont aortas (2,093 +/- 329 mg) and abolished the attenuating effects of Indo. Indo, SQ, and Daz exerted identical effects on contractile responses of male, female, and OVX female aortas to PE. These findings establish the following in the rat aorta: 1) CP, probably thromboxane and/or endoperoxide, is responsible for approximately 25-30% of contractile responses of females, but not males, to VP and PE; 2) CP production by the female aorta is primarily endothelial in origin; and 3) ovarian steroids modulate production and/or actions of CP in female aortas.  相似文献   

2.
To determine the roles of estrogen and constrictor prostanoids in vasopressin (VP)-induced contraction of female rat aorta, vascular reactivity to VP was determined in thoracic aortas of intact, ovariectomized, and ovariectomized + estrogen-replaced female rats in the presence of indomethacin (Indo), NS-398, SQ-29,548, or vehicle control. The effects of estrogen on vascular reactivity to the thromboxane A(2) analog U-46619 were also examined. Maximal contractile response to VP in intact female rats (5,567 +/- 276 mg/mg of aortic ring wt) was markedly attenuated by ovariectomy (2,485 +/- 394 mg; P < 0.001) and restored by estrogen replacement with 17beta-estradiol (5,059 +/- 194 mg; P > 0.1). Indo and NS-398 significantly attenuated maximal responses to VP in intact female rats to a similar extent [3,176 +/- 179 (P < 0.0001) and 3,258 +/- 152 mg (P < 0.0001), respectively]. Ovariectomy abolished and estrogen replacement restored the inhibitory effects of Indo, NS-398, and SQ-29,548. Contractile responses of rat aorta to U-46619 were significantly greater (P < 0.0001) in females (5,040 +/- 238 mg) than in males (3,679 +/- 96 mg). Ovariectomy markedly attenuated (3,923 +/- 84 mg; P < 0.01) and estrogen replacement restored (5,024 +/- 155 mg; P > 0.1) responses to U-46619 in female aortas. These data reveal that estrogen is an important regulator of the contractile responses of female rat aorta to VP, which appears to potentiate both cyclooxygenase-2 and constrictor prostanoid function in the vascular wall.  相似文献   

3.
The present studies test the hypothesis that contraction to EGF is dependent on mineralocorticoids and/or an elevation in systolic blood pressure (SBP). Endothelium-denuded thoracic aortas from sham normotensive, N(omega)-nitro-L-arginine (L-NNA) hypertensive, Wistar-Kyoto (WKY), and spontaneously hypertensive rats (SHR) were used in isolated tissue-bath experiments. Maximal contraction to epidermal growth factor [EGF; percentage of phenylephrine (PE; 10 umol/l)-induced contraction] was greater in strips from L-NNA (32 +/- 5%) and SHR (53 +/- 8%) rats compared with sham and WKY rats (17 +/- 1 and 12 +/- 4%, respectively). Wistar-Furth rats became only mildly hypertensive when given DOCA salt (134 +/- 6 mmHg) compared with Wistar rats (176 +/- 9 mmHg), but aortas from both strains had a similarly enhanced contraction to EGF (approximately 9 times the maximal contraction of sham aorta). Furthermore, in vitro incubation of aortas from Wistar and Wistar-Furth rats with aldosterone (10 nmol/l) increased EGF-receptor mRNA expression by >50%. These data indicate that arterial contraction to EGF may occur independent of hypertension and be stimulated by mineralocorticoids.  相似文献   

4.
Uridine 5′-diphosphate (UDP) plays an important role in controlling vascular tone; however, UDP-mediated response in metabolic syndromes, including obesity and type 2 diabetes in females, remains unclear. In this study, we investigated UDP-mediated response in the aorta of female obese Otsuka Long–Evans Tokushima Fatty (OLETF) rats and control Long–Evans Tokushima Otsuka (LETO) rats. In OLETF rat aortas precontracted by phenylephrine (PE) (vs. LETO), (1) UDP-induced relaxation was increased, whereas acetylcholine (ACh)-induced relaxation was decreased; (2) no UDP- or ACh-induced relaxations were observed in endothelial denudation, whereas UDP-induced small contraction was observed; and (3) NG-nitro-L-arginine [L-NNA, a nitric oxide (NO) synthase inhibitor] eliminated UDP-induced relaxation and small contraction, whereas caused contrasting responses by ACh, including slight relaxations (LETO) and contractions (OLETF). Indomethacin, a cyclooxygenase inhibitor, eliminated the difference in UDP- and ACh-induced relaxations between the groups by increased UDP-induced relaxation in the LETO group and increased ACh-induced relaxation in the OLETF group. MRS2578, a P2Y6 receptor antagonist, eliminated the difference in UDP-induced relaxations between the groups by decreasing UDP-induced relaxation in the OLETF group. MRS2578 had no effect on UDP-induced contraction in endothelium-denuded aortas. Therefore, these findings demonstrate opposite trends of relaxations by UDP and ACh in OLETF and LETO rat aortas. These differences may be attributed to the imbalance between NO and vasoconstrictor prostanoids upon stimulations. Increased UDP-induced relaxation in OLETF rat aorta may be caused by the activation of endothelial MRS2578-sensitive P2Y6 receptor.  相似文献   

5.
Intact Madison (M) rats have greater pulmonary pressor responses to acute hypoxia than Hilltop (H) rats. We tested the hypothesis that the difference in pressor response is intrinsic to pulmonary arteries and that endothelium contributes to the difference. Pulmonary arteries precontracted with phenylephrine (10(-7) M) from M rats had greater constrictor responses [hypoxic pulmonary vasoconstriction (HPV)] to acute hypoxia (0% O(2)) than those from H rats: 473 +/- 30 vs. 394 +/- 29 mg (P < 0.05). Removal of the endothelium or inhibition of nitric oxide (NO) synthase by N(omega)-nitro-L-arginine (L-NA, 10(-3) M) significantly blunted HPV in both strains. Inhibition of cyclooxygenase by meclofenamate (10(-5) M) or blockade of endothelin type A and B receptors by BQ-610 (10(-5) M) + BQ-788 (10(-5) M), respectively, had no effect on HPV. Constrictor responses to phenylephrine, endothelin-1, and prostaglandin F(2alpha) were similar in pulmonary arteries from both strains. The relaxation response to ACh, an NO synthase stimulator, was significantly greater in M than in H rats (80 +/- 3 vs. 62 +/- 4%, P < 0.01), but there was no difference in response to sodium nitroprusside, an NO donor. L-NA potentiated phenylephrine-induced contraction to a greater extent in pulmonary arteries from M than from H rats. These findings indicate that at least part of the strain-related difference in acute HPV is attributable to differences in endothelial function, possibly related to differences in NO production.  相似文献   

6.
Comparative effects of endothelin and phorbol 12-13 dibutyrate in rat aorta   总被引:1,自引:0,他引:1  
The vasoconstrictive properties of endothelin (ET-1) and the protein kinase C activator, phorbol 12-13 dibutyrate (PDB) were comparatively investigated in isolated rat aorta. ET-1 (0.3-100 nM) and PDB (10 nM-3 microM) induced a slowly developing sustained contraction in endothelium denuded aorta. Maximal contractions induced by ET-1 and PDB were unaffected by diltiazem (10 microM). Substantial contraction to ET-1 (30 nM) and PDB (0.1 microM) remained in calcium-free medium. Contractions of ET-1 and PDB in calcium-free medium were unaffected by intracellular calcium depletion induced by phenylephrine. Following the response to ET-1 and PDB in a calcium-free medium, an additional sustained contraction was observed after calcium (2.5 mM) was added to the bath. The protein kinase C inhibitor, H7 (100 microM) was more potent in inhibiting contractions induced by phenylephrine and KCl than the ones elicited by ET-1 and PDB. The other protein kinase C inhibitors i.e. staurosporine (50 nM) and phloretin (100 microM) inhibited to a similar extent all the agonists tested. These results suggest that protein kinase C may play an important role in mediating the contraction to ET-1 in rat aorta.  相似文献   

7.
The handling of serotonin [5-hydroxytryptamine (5-HT)] depends on the serotonin transporter (SERT). A SERT knockout (KO) rat is a useful model to test the hypothesis that SERT is the primary mechanism for arterial 5-HT uptake and to investigate the impact of SERT removal on blood pressure. Wild-type (WT) and KO rats were used to measure 5-HT content (plasma, raphe, aorta, carotid, and mesenteric artery), aortic isometric contraction, and blood pressure. HPLC supported the lack of circulating 5-HT in plasma (ng/ml plasma, WT, 310 +/- 96; and KO, 1.0 +/- 0.5; P < 0.05). Immunohistochemistry and Western blot analyses validated the presence of the SERT protein in the WT rats and a lesser expression in the KO rat. The aorta isolated from KO rats had a normal contraction to phenylephrine and norepinephrine and a normal relaxation to the endothelium-dependent agonist acetylcholine compared with the aorta from WT. In contrast, the potency of 5-HT was increased in the aorta from KO rats compared with WT rats [-log EC(50) (M); WT, 5.71 +/- 0.08; and KO, 6.7 +/- 0.18] and maximum contraction was reduced [%phenylephrine (10 muM) contraction, WT, 113 +/- 6%; and KO, 52 +/- 12%]. 5-HT uptake was reduced but not abolished in arteries of the KO compared with the WT rats. Diurnal mean arterial blood pressure, heart rate, and locomotor activity level of the KO rats were similar to the WT rats. These data suggest that there are other mechanisms of 5-HT uptake in the arteries of the rat and that although the absence of circulating 5-HT and/or SERT function sensitizes arteries to 5-HT, SERT dysfunction does not impair normal blood pressure.  相似文献   

8.
To determine the influences of the Mn, Cu, and Zn on α1-adrenoceptor (AR)-mediated vasoconstriction, we investigated their effects on vasoconstriction produced by the α1-AR agonist phenylephrine in isolated rings of rat thoracic aorta. The cumulative concentration-contraction curves for phenylephrine were obtained in the absence and presence of Mn (0.3, 1, 3 μM), Cu (1, 10, 16 μM), and Zn (0.3, 1, 10 μM). Mn, Cu, and Zn each inhibited phenylephrine-mediated contraction in a dose-dependent manner. The maximal phenylephrine-induced contraction was significantly reduced by the pretreatment of the arterial rings with 10 and 16 μM Cu (p<0.05). The results suggest that variations in the plasma concentrations of metal might lead to changes in α1-AR-mediated constrictive response.  相似文献   

9.
We hypothesized that A2A adenosine receptor (A2A AR) activation causes vasorelaxation through cytochrome P-450 (CYP) epoxygenases and endothelium-derived hyperpolarizing factors, whereas lack of A2A AR activation promotes vasoconstriction through Cyp4a in the mouse aorta. Adenosine 5'-N-ethylcarboxamide (NECA; 10(-6) M), an adenosine analog, caused relaxation in wild-type A2A AR (A2A AR+/+; +33.99 +/- 4.70%, P < 0.05) versus contraction in A2A AR knockout (A2A AR(-/-); -27.52 +/- 4.11%) mouse aortae. An A2A AR-specific antagonist (SCH-58261; 1 microM) changed the NECA (10(-6) M) relaxation response to contraction (-35.82 +/- 4.69%, P < 0.05) in A2A AR+/+ aortae, whereas no effect was noted in A2A AR(-/-) aortae. Significant contraction was seen in the absence of the endothelium in A2A AR+/+ (-2.58 +/- 2.25%) aortae compared with endothelium-intact aortae. An endothelial nitric oxide synthase inhibitor (N-nitro-L-arginine methyl ester; 100 microM) and a cyclooxygenase inhibitor (indomethacin; 10 microM) failed to block NECA-induced relaxation in A2A AR+/+ aortae. A selective inhibitor of CYP epoxygenases (methylsulfonyl-propargyloxyphenylhexanamide; 10 microM) changed NECA-mediated relaxation (-22.74 +/- 5.11% at 10(-6) M) and CGS-21680-mediated relaxation (-18.54 +/- 6.06% at 10(-6) M) to contraction in A2A AR+/+ aortae, whereas no response was noted in A2A AR(-/-) aortae. Furthermore, an epoxyeicosatrienoic acid (EET) antagonist [14,15-epoxyeicosa-5(Z)-enoic acid; 10 microM] was able to block NECA-induced relaxation in A2A AR+/+ aortae, whereas omega-hydroxylase inhibitors (10 microM dibromo-dodecenyl-methylsulfimide and 10 microM HET-0016) changed contraction into relaxation in A2A AR(-/-) aorta. Cyp2c29 protein was upregulated in A2A AR+/+ aortae, whereas Cyp4a was upregulated in A2A AR(-/-) aortae. Higher levels of dihydroxyeicosatrienoic acids (DHETs; 14,15-DHET, 11,12-DHET, and 8,9-DHET, P < 0.05) were found in A2A AR+/+ versus A2A AR(-/-) aortae. EET levels were not significantly different between A2A AR+/+ and A2A AR(-/-) aortae. It is concluded that CYP epoxygenases play an important role in A2A AR-mediated relaxation, and the deletion of the A2A AR leads to contraction through Cyp4a.  相似文献   

10.
GTP cyclohydrolase 1 is the rate-limiting enzyme in production of tetrahydrobiopterin, a necessary cofactor for endothelial nitric oxide synthase. We tested the hypothesis that inhibition of tetrahydrobiopterin synthesis impairs endothelium-dependent relaxation and increase blood pressure in rats. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a GTP cyclohydrolase 1 inhibitor, was given in drinking water (approximately 120 mg.kg(-1).day(-1)) to male Sprague-Dawley rats for 3 days. Systolic blood pressures were measured (tail-cuff procedure) for 3 days before and each day during DAHP treatment. Blood pressure was significantly increased after DAHP treatment (122 +/- 2 vs. 154 +/- 3 mmHg before and after DAHP, respectively; P < 0.05). Endothelium-intact aortic segments from pentobarbital sodium-anesthetized rats were isolated and hung in organ chambers for measurement of isometric force generation. Aortas from DAHP-treated rats exhibited a decreased maximal relaxation to ACh compared with controls [% relaxation from phenylephrine (10-7 M)-induced contraction: DAHP 57 +/- 6% vs. control 79 +/- 4%; P < 0.05]. Relaxation responses to A-23187 were also decreased in aortas from DAHP-treated rats compared with controls. Incubation with sepiapterin (10-4 M, 1 h), which produces tetrahydrobiopterin via a salvage pathway, restored relaxation to ACh in aortas from DAHP-treated rats. Superoxide dismutase significantly increased ACh-induced relaxation in aortas from DAHP-treated rats, whereas catalase had no effect. Endothelium-independent relaxation to sodium nitroprusside in aortas from DAHP-treated rats was not different from control rats; however, nitric oxide synthase inhibition increased sensitivity to sodium nitroprusside in aortas from DAHP-treated rats. These results support the hypothesis that GTP cyclohydrolase 1 inhibition decreases relaxation and increases blood pressure in rats.  相似文献   

11.
We sought to delineate contributions of nitric oxide (NO) and other mechanisms to impairment of contraction and endothelium-dependent relaxation following prolonged in vitro incubation, endotoxin and interleukin-1 exposure in isolated rat aorta. Responses from freshly-dissected (control) rings +/-endothelium were compared with those from rings incubated in sterile, antibiotic containing medium +/- E. Coli endotoxin (LPS, 100 microg/ml) +/- interleukin-1 (IL-1, 40 ng/ml) at 37 degrees C for 20-24 h. In some experiments, medium included dexamethasone (DEX, 1 microg/ml), cycloheximide (10 microg/ml), or N(G)-nitro-L-arginine (NNLA, 10(-4)M). After incubation, medium nitrite was measured. Incubation alone, without addition of inflammatory mediators, impaired contraction in an agonist-specific manner, by both NO-dependent and NO-independent mechanisms. Either LPS or IL-1 diminished contraction further, in a similarly heterogeneous manner. For example, contractions were changed in LPS-incubated endothelium-intact rings (vs. fresh controls) by -85%, +115%, -15%, -96%, and -37% for phenylephrine (PE), serotonin, prostaglandin F2alpha, angiotensin II, and U46619, respectively. NO synthase inhibition with NNLA either following, or during LPS incubation only partially normalized subsequent PE contractions, an effect which was smaller than that of DEX. Nitrite accumulation was inversely proportional to PE response, even though NO was not the sole mediator of LPS-impaired contraction. LPS and IL-1 nearly abolished ACh-induced relaxation, which was only mildly impaired by incubation alone. We conclude that prolonged incubation impaired vasoconstriction via both NO synthase induction and NO-independent mechanisms. LPS or IL-1 incubation impaired vasoconstriction further, primarily by NO-independent mechanisms. Moreover, vasoconstrictor responses following LPS varied with the agonist's ability to modulate endothelial NO release. These results are in accord with the failure of NO synthase inhibition to fully restore systemic vascular resistance indices in experimental endotoxemia or in hyperdynamic septic patients.  相似文献   

12.
EDRF对PE引起的大鼠主动脉缩血管效应的作用   总被引:1,自引:0,他引:1  
本文研究EDRF(endothelium-derivedrelaxingfactor,EDRF)对PE(phenylephrine)引起的大鼠主动脉收缩反应的影响。内皮完整和去内皮的大鼠主动脉环悬挂于器官浴槽中,测定血管的张力和收缩速度的变化。所有的实验在消炎痛(indomethacin,10μmol/L)存在下进行。用美兰(methyleneblue,MB,10μmol/L)或左旋硝基精氨酸(NG-nitro-L-arginine,L-NNA,30μmol/L)处理内皮完整的大鼠主动脉环,PE的剂量-收缩张力曲线明显左移,EC30值均降低5倍,最大反应比率分别为1.6±0.4和1.6±0.5。在去内皮的大鼠主动脉环中,经MB和L-NNA处理后,仍可见EC30下降3倍,最大反应比率均为1.0±0.2。后者可能与血管平滑肌产生少量EDRF有关。我们的结果提示PE对血管的收缩反应也受血管内皮和平滑肌产生的EDRF的调控  相似文献   

13.
Ishihata A  Sakai M  Katano Y 《Peptides》2006,27(1):80-86
To elucidate whether aging influences the vascular contractile effect of urotensin II in rat thoracic aorta, and to evaluate the contribution of endothelial vasodilating substances in mediating the effect of urotensin II, the effect of urotensin II was examined in the vessels of young (2-3-month-old) and aged rat. Isolated rat aortic rings incubated in Krebs-Henseleit solution gassed with 95% O2/5% CO2 were stimulated with urotensin II, and the developed tension was measured. Urotensin II increased the developed tension, which was decreased by aging. In 2-3-months-old young aorta without endothelium, urotensin II (10(-10) to 10(-7)) elicited a concentration-dependent aortic contraction to the maximal response almost equivalent to high KCl-induced contraction (79.4+/-11.3% of KCl(max)). In the presence of endothelium, the urotensin II-induced vasoconstriction in young aorta was significantly attenuated to 33.3+/-4.6% of KCl(max). However, the contractile response was greater in the pretreatment with N(G)-nitro-L-arginine (L-NNA) (100 microM) (50.3+/-8.4% of KCl(max) in endothelial denuded aorta), suggesting the vasorelaxing role of endothelial nitric oxide. In 25-27-months-old aged rat aorta, the urotensin II-mediated contraction was remarkably decreased, both in the presence (6.3+/-2.0% of KCl(max)) and absence (11.7+/-3.0% of KCl(max)) of endothelium. A cyclooxygenase inhibitor, diclofenac (10 microM), did not have any effect on the urotensin II-induced contraction. These results suggest that urotensin II can induce vascular smooth muscle contraction in rat aorta, and there was an aging-related decline in the urotensin II-induced contraction. Endothelial production of nitric oxide in response to urotensin II but not cyclooxygenase metabolites such as prostacyclin may play a role in reducing the vascular constriction especially in young aorta.  相似文献   

14.
Copper deficiency adversely affects the extracellular matrix of the arterial wall, leading to cardiovascular lesions. To study the lesions resulting from copper deficiency, the composition of proteoglycans from aortas of copper-deficient rats was compared with proteoglycans of aortas from copper-supplemented rats. Copper deficiency in rats was verified by copper levels in adrenal glands (mean +/- SE, 0.37 +/- 0.07 vs 1.03 +/- 0.17 micrograms/g wet wt in supplemented rats). The proteoglycans were isolated from the aorta by extraction with 4 M guanidine-HCl and by digestion of the tissue with elastase. The proteoglycans were purified by CsCl isopycnic centrifugation and fractionated by gel filtration. The fractions were characterized for molecular size and glycosaminoglycan composition. Total uronate in the aortas from copper-deficient rats was 25% greater than in aortas from copper-supplemented rats, and the proteoglycans from copper-deficient rat aortas were of greater molecular size. Among the glycosaminoglycans the concentration (microgram/mg tissue) of isomeric chondroitin sulfates, particularly dermatan sulfate, was greater in copper-deficient animals than in copper-supplemented animals. These observations are similar to earlier findings in experimental atherosclerosis and to a response of cardiovascular connective tissue to injury.  相似文献   

15.
The aim of the present study was to characterize the function of resistance arteries, and the aorta, in rats with adenine-induced chronic renal failure (A-CRF). Sprague-Dawley rats were randomized to chow with or without adenine supplementation. After 6-10 wk, mesenteric arteries and thoracic aortas were analyzed ex vivo by wire myography. Plasma creatinine concentrations were elevated twofold at 2 wk, and eight-fold at the time of death in A-CRF animals. Ambulatory systolic and diastolic blood pressures measured by radiotelemetry were significantly elevated in A-CRF animals from week 3 and onward. At death, A-CRF animals had anemia, hyperphosphatemia, hyperparathyroidism, and elevated plasma levels of asymmetric dimethylarginine and oxidative stress markers. There were no significant differences between groups in the sensitivity, or maximal response, to ACh, sodium nitroprusside (SNP), norepinephrine, or phenylephrine in either mesenteric arteries or aortas. However, in A-CRF animals, the rate of aortic relaxation was significantly reduced following washout of KCl (both in intact and endothelium-denuded aorta) and in response to ACh and SNP. Also the rate of contraction in response to KCl was significantly reduced in A-CRF animals both in mesenteric arteries and aortas. The media of A-CRF aortas was thickened and showed focal areas of fragmented elastic lamellae and disorganized smooth muscle cells. No vascular calcifications could be detected. These results indicate that severe renal failure for a duration of less than 10 wk in this model primarily affects the aorta and mainly slows the rate of relaxation.  相似文献   

16.
Estrogen potentiates vascular reactivity to vasopressin (VP) by enhancing constrictor prostanoid function. To determine the cellular and molecular mechanisms, the effects of estrogen on arachidonic acid metabolism and on the expression of constrictor prostanoid pathway enzymes and endoperoxide/thromboxane receptor (TP) were determined in the female rat aorta. The release of thromboxane A2 (TxA2) and prostacyclin (PGI2) was measured in male (M), intact-female (Int-F), ovariectomized-female (OvX-F), and OvX + 17beta-estradiol-replaced female (OvX + ER-F) rats. The expression of mRNA for cyclooxygenase (COX)-1, COX-2, thromboxane synthase (TxS), and TP by aortic endothelium (Endo) and vascular smooth muscle (VSM) of these four experimental groups was measured by RT-PCR. The expression of COX-1, COX-2, and TxS proteins by Endo and VSM was also estimated by immunohistochemistry (IHC). Basal release of TxA2 and PGI2 was similar in M (18.8 +/- 1.9 and 1,723 +/- 153 pg/mg ring wt/45 min, respectively) and Int-F (20.2 +/- 4.2 and 1,488 +/- 123 pg, respectively) rat aortas. VP stimulated the dose-dependent release of TxA2 and PGI2 from both male and female rat aorta. OvX markedly attenuated and ER therapy restored VP-stimulated release of TxA2 and PGI2 in female rats. No differences in COX-1 mRNA levels were detected in either Endo or VSM of the four experimental groups (P > 0.1). The expression of both COX-2 and TxS mRNA were significantly higher (P < 0.05) in both Endo and VSM of Int-F and OvX + ER-F, compared with M or OvX-F. Expression of TP mRNA was significantly higher in VSM of Int-F and OvX + ER-F compared with M or OvX-F. IHC revealed the uniform staining of COX-1 in VSM of the four experimental groups, whereas staining of COX-2 and TxS was greater in Endo and VSM of Int-F and OvX + ER-F than in OvX-F or M rats. These data reveal that estrogen enhances constrictor prostanoid function in female rat aorta by upregulating the expression of COX-2 and TxS in both Endo and VSM and by upregulating the expression of TP in VSM.  相似文献   

17.
18.
Stress-induced vascular adaptive response in SHR was investigated, focusing on the endothelium. Noradrenaline responses were studied in intact and denuded aortas from 6-week-old (prehypertensive) and 14-week-old (hypertensive) SHR and age-matched Wistar rats submitted or not to acute stress (20-min swimming and 1-h immobilization 25 min apart), preceded or not by chronic stress (2 sessions 2 days apart of 1-h day immobilization for 5-consecutive days). Stress did not alter the reactivity of denuded aorta. Moreover, no alteration in the EC50 values was observed after stress exposure. In intact aortas, acute stress-induced hyporeactivity to noradrenaline similar between strains at both age. Chronic stress potentiated this adaptive response in 6- and 14-week-old Wistar but not in 6-week-old SHR, and did not alter the reactivity of 14-week-old SHR. Maximum response (g) in intact aortas [6-week-old: Wistar 3.25+/-0.12, Wistar/acute 1.95+/-0.12*, Wistar/chronic 1.36+/-0.21*(+), SHR 1.75+/-0.11, SHR/acute 0.88+/-0.08*, SHR/chronic 0.85+/-0.05*; 14-week-old: Wistar 3.83+/-0.13, Wistar/acute 2.72+/-0.13*, Wistar/chronic 1.91+/-0.19*(+), SHR 4.03+/-0.17, SHR/acute 2.26+/-0.12*, SHR/chronic 4.10+/-0.23; inside the same strain: *P < 0.05 relate to non-stressed rat, +P < 0.05 related to acute stressed rat; n = 6-18]. Independent of age and strain, L-NAME and endothelium removal abolished the stress-induced aorta hyporeactivity. CONCLUSION: The vascular adaptive response to stress is impaired in SHR, independently of the hypertensive state. Moreover, this vascular adaptive response is characterized by endothelial nitric oxide-system hyperactivity in both strains.  相似文献   

19.
The present study was designed to evaluate the role of endothelial NO in the hemodynamics and vascular changes that occur in heart failure following myocardial infarction in rats. Left ventricular systolic pressure (LVSP), mean blood pressure (MBP), aortic morphology (media thickness) and reactivity were evaluated in rats with coronary artery ligation (heart failure, HF) or sham operation (SO) untreated or treated for four weeks with either a low dose of NG-nitro-L-arginine methyl ester (L-NAME, 6 mg.kg(-1).day(-1)) or L-arginine (1.5 g.kg(-1).day(-1)). In rats with HF LVSP (HF = 111 +/- 8 mmHg; SO = 143 +/- 6 mmHg, p < 0.05), MBP (HF = 98 +/- 8 mmHg; SO = 127 +/- 6 mmHg, p < 0.05) and aortic media thickness (HF = 68 +/- 6 microm; SO = 75 +/- 2 microm, p < 0.05) were significantly reduced. The contractile response to phenylephrine and the endothelium-independent relaxation to sodium nitroprusside were similar in HF and SO aortas, but the sensitivity (pD2) to acetylcholine (HF = 7.5 +/- 0.06; SO = 7.1 +/- 0.08, p < 0.05) was significantly increased in HF aortas, indicating an enhanced basal NO release. Treatment with L-NAME (LN) reversed the effects of HF on LVSP (HF-LN = 143 +/- 9 mmHg, p < 0.05 vs. HF), MBP (HF-LN = 128 +/- 8 mmHg, p < 0.05 vs. HF), sensitivity to acetylcholine (HF-LN = 6.9 +/- 0.10, p < 0.05 vs. HF) and aortic media thickness (HF-LN = 79 +/- 2 microm, p < 0.05 vs. HF), without changing these parameters in SO rats. L-NAME also selectively increased the maximal response to phenylephrine in HF aortas (HF-LN = 2.4 +/- 0.20 g; HF = 1.6 +/- 0.17 g, p < 0.05). L-arginine (LA) did not change the effects of HF on LSVP, MBP or aortic media thickness, but it reduced the sensitivity to phenylephrine in aortas from SO rats (SO-LA = 6.5 +/- 0.12; SO = 7.0 +/- 0.09, p < 0.05). Taken together, these results suggest an important role for endothelial NO in mediating the reduced vascular growth, myocardial dysfunction and hypotension in rats with HF.  相似文献   

20.
Reactive oxygen species (ROS), such as superoxide and H(2)O(2), are capable of modifying vascular tone, although the response to ROS can vary qualitatively among vascular beds, experimental procedures, and species. Endothelin-1 (ET-1) induces superoxide production, which can be dismutated to H(2)O(2). The RhoA/Rho kinase pathway partially mediates ET-1-induced contraction and recently was implicated in superoxide-induced contraction. We hypothesized that H(2)O(2), not superoxide, mediates venous ET-1-induced contraction. Rat thoracic aorta and vena cava contracted to exogenously added H(2)O(2) (1 microM-1 mM) [maximum aortic contraction = 10 +/- 3% of phenylephrine (10 microM) contraction; maximum venous contraction = 85 +/- 13% of norepinephrine (10 microM) contraction]. (+)-(R)-trans-4-(1-aminoethyl-N-4-pyridil)cyclohexanecarboxamide dihydrochloride (Y-27632, 10 microM), a Rho kinase inhibitor, significantly reduced venous H(2)O(2)-induced contraction (15 +/- 1% of control maximum) and reduced maximum ET-1-induced contraction by 59 +/- 1%. However, neither the H(2)O(2) scavenger catalase (100 and 2,000 U/ml) nor cell permeable polyethylene glycol-catalase (163 and 326 U/ml) reduced ET-1-induced contraction in the vena cava. The catalase inhibitor 3-aminotriazole (3-AT) also had no effect on maximal venous ET-1-induced contraction. Basal H(2)O(2) levels were three times higher in the vena cava than in the aorta (vena cava, 0.74 +/- 0.09 nmol H(2)O(2)/mg protein; aorta, 0.24 +/- 0.05 nmol H(2)O(2)/mg protein). ET-1 (100 nM) increased H(2)O(2) in the vena cava but not in the aorta (vena cava, 154.10 +/- 17.29% of control H(2)O(2); aorta, 83.72 +/- 20.20%). Antagonism of either ET(A) or ET(B) receptors with the use of atrasentan (30 nM) or BQ-788 (100 nM), respectively, reduced ET-1 (100 nM)-induced increases in venous H(2)O(2). In summary, ET-1 increased H(2)O(2) in veins but not arteries, and venous ET-1-induced H(2)O(2) production was independent of the contractile properties of ET-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号