首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Schistosome worms are blood-dwelling flukes that cause chronic infection in more than 200 million people and are thought to be responsible for 500,000 deaths annually. During infection with Schistosoma haematobium, eggs are deposited in the mucosa and submucosa of the bladder and lower ureters. Squamous cell carcinoma (SCC) of the bladder is a long-term sequela of chronic infection. The mechanisms underlying the association between S. haematobium and SCC of the bladder are largely unknown, with all reports to date exclusively demonstrating epidemiological evidence linking S. haematobium infection with SCC of the bladder. We hypothesised that the parasite antigens might induce alterations in epithelial cells towards cancer. For this we used Chinese Hamster Ovary (CHO) cells and treated the cells in culture with S. haematobium total antigen (Sh). Our results showed increased proliferation, increased S-phase and decreased apoptosis, as well as down-regulation of tumour suppressor p27 and up-regulation of anti-apoptotic molecule Bcl-2 in Sh-treated cells compared with controls. We also found increased migration and invasion. To our knowledge, this is the first report demonstrating alterations of normal epithelial cells as a direct effect of S. haematobium antigens.  相似文献   

3.
Fang CM  Shi C  Xu YH 《Cell research》1999,9(4):305-314
Human c-myc cDNA was fused with the hormonebinding domain (HBD) cDNA of murine estrogen receptor gene and the chimeric gene was introduced into the CHO cells.The fusion protein,c-MycER,becomes activated when the synthetic steroid,4-hydroxy-tamoxifen (OHT),binds HBD.Activated c-MycER,likely c-Myc,can induce quiescent CHO cells reentry into S phase and subsequent cell death under serum-free condition.In addition,the expression of some proposed c-myc target genes such as ODC,MrDb,cad,rccl and rcl were found to increase upon OHT induction before S phase entry and apoptosis,indicating that these target genes are involved in cell cycle regulation and/or apoptosis control.However,the mutant D106-143c-MycER protein does not have above activities.  相似文献   

4.
5.
Mutations in the PKHD1 gene result in autosomal recessive polycystic kidney disease (ARPKD) in humans. To determine the molecular mechanism of the cystogenesis in ARPKD, we recently generated a mouse model for ARPKD that carries a targeted mutation in the mouse orthologue of human PKHD1. The homozygous mutant mice display hepatorenal cysts whose phenotypes are similar to those of human ARPKD patients. By littermates of this mouse, we developed two immortalized renal collecting duct cell lines with Pkhd1 and two without. Under nonpermissive culture conditions, the Pkhd1/ renal cells displayed aberrant cell–cell contacts and tubulomorphogenesis. The Pkhd1/ cells also showed significantly reduced cell proliferation and elevated apoptosis. To validate this finding in vivo, we examined proliferation and apoptosis in the kidneys of Pkhd1/ mice and their wildtype littermates. Using proliferation (PCNA and Histone-3) and apoptosis (TUNEL and caspase-3) markers, similar results were obtained in the Pkhd1/ kidney tissues as in the cells. To identify the molecular basis of these findings, we analyzed the effect of Pkhd1 loss on multiple putative signaling regulators. We demonstrated that the loss of Pkhd1 disrupts multiple major phosphorylations of focal adhesion kinase (FAK), and these disruptions either inhibit the Ras/C-Raf pathways to suppress MEK/ERK activity and ultimately reduce cell proliferation, or suppress PDK1/AKT to upregulate Bax/caspase-9/caspase-3 and promote apoptosis. Our findings indicate that apoptosis may be a major player in the cyst formation in ARPKD, which may lead to new therapeutic strategies for human ARPKD.  相似文献   

6.
Optimization of host cell lines both for transient and stable protein production is typically hampered by the inherent heterogeneity of cells within a population. This heterogeneity is caused not only by “hard fact” gene mutations, but also by subtle differences in the cellular network of regulation, which may include epigenetic variations. Taking advantage of this heterogeneity, we sorted for naturally occurring variants of CHO‐K1 and CHO‐S host cells that possess an improved cellular machinery for transient antibody production. The long‐term goal of this study was both to identify host cells that yield recombinant cell lines with on average higher productivity, but also to study the molecular differences that characterize such cells, independent of the site of gene integration or gene amplification. To identify such cells we optimized the procedure for transient transfection by electroporation to a degree that gave uniform transfer of plasmid DNA into nearly 100% of the cells and resulted in reproducible average productivities, with a standard deviation of 16% between independent experiments. Using this optimized protocol, the 1% of cells with the highest specific productivity was sorted and subcloned with a cold capture secretion assay. Upon re‐transfection, the resulting subclones showed the same specific productivity as their respective parental cell line. To enrich for cells with potentially stable improved properties, the 1% highest producers were sorted three times, 2 days after transient transfection each, and the enriched population was again sorted into microtiter plates for subcloning. For each of the two parental cell lines tested, three subclones were obtained that had a threefold higher specific productivity after transient transfection. This property was stable for approximately 3 months, indicating that the changes in productivity were regulatory and not mutational. Biotechnol. Bioeng. 2011;108: 386–394. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
One challenge in biotechnology industry is to produce recombinant proteins with prolonged serum half-life. One strategy for enhancing the serum half-life of proteins includes increasing the molecular weight of the protein of interest by fusion to the Fc part of an antibody. In this context, we have expressed a homodimer fusion protein in CHO cells which consists of two identical polypeptide chains, in which our target protein, recombinant human erythropoietin (rhEpo), is N-terminally linked with the Fc part of a human IgG1 molecule. In the present study, culture supernatant of a stable clone was collected and purified by affinity chromatography prior characterization. We emphasized product quality aspects regarding the fusion protein itself and in addition, post-translational characterization of the subunits in comparison to human antibodies and rhEpo. However, overproduction of recombinant proteins in mammalian cells is well established, analysis of product quality of complex products for different purposes, such as product specification, purification issues, batch to batch consistency and therapeutical consequences, is required. Besides product quantification by ELISA, N-acetylneuraminic acid quantification in microtiterplates, quantitative isoform pattern and entire glycan profiling was performed. By using these techniques for the characterization of the recombinant human Epo-Fc (rhEpo-Fc) molecule itself and furthermore, for the separate characterization of both subunits, we could clearly show that no significant differences in the core glycan structures compared to rhEpo and human antibody N-glycans were found. The direct comparison with other rhEpo-Fc fusion proteins failed, because no appropriate data were found in the literature.  相似文献   

8.
9.
The developmental expression of the protooncogenes, c-fos and c-myc, in muscle and liver of 14-and 19-day embryos and 1-, 6-, 8-and 28-day-old chicks of Athens Canadian Random Bred (ACRB) Single Comb White Leghorn (SCWL) and Peterson X Arbor Acres commercial broiler (PXAA) was determined. For the three stocks of chicken, significant differences were found in c-fos and c-myc expression. For both muscle and liver, averaged across ages, abundance of c-fos RNA was highest in PXAA and lowest in ACRB with differences significant at the P<0.01 level. c-myc RNA levels were significantly higher (P<0.01) in PXAA than in ACRB or SCWL liver. Taken over the developmental period, expression of c-fos RNA in muscle increased at different rates between breeds from 14-day embryo levels to peak levels in 6- to 8-day-old chicks and declined in 28-day-old chicks. Levels of c-fos were much lower in liver and showed no consistent differences related to developmental stage. A steady decline in c-myc from 14-day embryo levels to 28-day-old chicks was found in both muscle and liver. This decline in c-myc levels generally parallels the decline in relative growth rates which occurs in all breeds over the developmental period. In liver, the fast growing PXAA had the highest levels of c-myc. c-fos, on the other hand, showed elevated levels in PXAA for both muscle and liver and distinctly different patterns between these two tissues over the developmental period, suggesting tissue-specific involvement in growth.  相似文献   

10.
Experiments on the transfection of cultured SKOV3 tumor cells of human ovarian adenocarcinoma and HeLa cells of human cervical carcinoma with gene Bax have demonstrated that SKOV3 cells are highly sensitive to the protein product of this gene, whereas the sensitivity of HeLa cells is substantially lower. HeLa cells obtained as a result of Bax transfection and subsequent selection are characterized by an extremely high Bax protein content and a hypersensitivity to doxorubicin. All Bax-transfected SKOV3 cells with an increased Bax content have died. In the SKOV3 cell line, a Bax exon 3 mutation has been found that corresponds to genotype G7/G9, whereas the native type of the Bax gene corresponds to genotype G8/G8. The results suggest that the G7/G9 mutation in Bax exon 3 deprives the Bax protein of proapoptotic activity.Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 40–47.Original Russian Text Copyright © 2005 by Rodina, Sladkova, Obuchova, Vezirkhanova, Moskaleva, Prusakova, Beletskii, Belushkina, Strelnikov, Ivanov, S. Severin, E. Severin.  相似文献   

11.
Gu MB  Todd P  Kompala DS 《Cytotechnology》1995,18(3):159-166
Foreign protein production levels in two recombinant Chinese hamster ovary (CHO) cell lines were compared in cells transfected with different expression vectors. One vector pNL1 contained the gene for neomycin resistance (neo r ) and thelacZ gene which codes for intracellular -galactosidase, with both genes controlled by the constitutive simian virus (SV40) promoter. The other vector CDG contained the amplifiabledhfr gene andlacZ gene, controlled by the constitutive SV40 and cytomegalovirus (CMV) promoters, respectively. Cell growth and -galactosidase expression were compared quantitatively after cells were selected in different concentrations of the neomycin analog G418 and methotrexate, respectively. A 62% reduction in growth rate occurred in recombinant CHO cells in which thelacZ anddhfr genes were highly amplified and expressed. In contrast, the combined effects of the unamplifiedneo r gene andlacZ gene expression on the growth kinetics were small. Any metabolic burden caused bylacZ gene expression, which was evaluated separately from the effect ofneo r gene expression, must be negligible, as higher expression of -galactosidase (1.5×10–6 units/cell) occurred in unamplified cells compared to the cells in whichlacZ was amplified by thedhfr-containing vector (3×10–7 units/cell). Thus, the main factor causing severe growth reduction (metabolic burden) in cells containing the amplifieddhfr gene system was not overexpression of -galactosidase butdhfr andlacZ gene co-amplification anddhfr gene expression.  相似文献   

12.
Genetic engineering is an attractive method to obtain dwarf plants in order to eliminate the extensive use of growth retardants in horticultural crop production. In this study, we evaluated the potential of using the Arabidopsis gai (gibberellic acid insensitive) gene to dwarf apple trees. The gai gene under 35S promoter was introduced in the apple rootstock A2 and the cultivars Gravenstein and McIntosh through Agrobacterium-mediated transformation. One transgenic clone was recovered for Gravenstein and McIntosh, and several transgenic clones for A2, confirmed by Southern blot analysis. Two weak bands were detected by Southern blot analysis in all the untransformed controls, possibly indicating the existence of the internal GAI gene in apple. Most of the transgenic plants showed reduced growth in vitro. Growth analyses in the greenhouse showed a clear reduction in stem length, internode length and node number for the dwarf clones. The normal phenotype of some transgenic clones appears to be associated with silencing of the introduced gai gene, confirmed by RT–PCR analysis. In general, transgenic clones showed reduced rooting ability, especially for the extremely compact ones.  相似文献   

13.
14.
Summary Synchronized transformed and reverse-transformed (by 10−3 M B2cAMP) CHO-K1 cells, growing adherent to plastic, are characterized by means of geometric and densitometric parameters at the level of both the entire cell and of the nuclei at various time intervals after selective mitotic detachment. Transformed and reverse-transformed cells triple-stained with Feulgen, Napthol Yellow S, and periodic acid-Schiff appeared very similar in terms of integrated optical density (IOD), related to either polysaccharides, protein, or DNA amount. On the other hand, a shift from a polygonal to a spindle-shaped morphology is accompanied by a significant decrease in both form factor and average optical density (AOD) of intact cell and nuclei, which are the most conspicuous measured changes caused by B2cAMP, in addition to a lengthening of the cell cycle duration. In both control and treated cells, important and parallel cell-cycle-dependent modulations of geometric and densitometric parameters are also observed, for both the cytoplasmic (i.e., cell morphometry) and DNA space (i.e., nuclear morphometry). Specifically, the modulation in nuclear morphometry during G1, S, G2, andM phases confirms previous findings on synchronized HeLa cells. The optical density threshold-dependence of geometric parameters shows that, while becoming fusiform, the cytoplasm of reverse-transformed cells had a particularly low optical density precisely in the polar area. Utilization of such an approach in the development of anobjective morphological classification of all cell lines grown as monolayers “in vitro” is also discussed.  相似文献   

15.
16.
The over-expression of Bcl-2 has greatly improved the culture period, specific growth rate, and maximum viable cell density of NS0 cells culture under low serum condition. Further analysis of these data suggests that a saturation model of the Monod type can be used to represent the relationships of specific growth rate and initial serum concentration. The μmax andK s for the Bcl-2 cell line is 0.927 day−1 and 0.947% (v/v) respectively, which are 21% greater and 7% lower respectively than its control counterpart. Study on the amino acid supplementation revealed that Bcl-2 cell lines possess greater improvement in the specific growth rate and maximum viable cell density compared to the control cell lines. A further increase in the amino acid supplementation has resulted a 17% decrease in specific growth rate and no improvement in maximum viable cell density in the control culture. However, the Bcl-2 cell line exhibited a better growth characteristic in this culture condition compared to that of control cell lines. The higher specific growth rate and maximum viable cell density of the Bcl-2 cell line in medium fortified with serum and MEM EAA suggested a more efficient nutrient metabolism compared to that in the control cell line. The low serum and amino acid utilisation rate and the higher cell yield may prove to be important in the development of serum/protein free culture.  相似文献   

17.
Chinese hamster ovary (CHO) cells are characterized by a low glucose catabolic efficiency, resulting in undesirable lactate production. Here, it is hypothesized that such low efficiency is determined by the transport of pyruvate into the mitochondria. The mitochondrial pyruvate carrier (MPC), responsible for introducing pyruvate into the mitochondria, is formed by two subunits, MPC1 and MPC2. Stable CHO cell lines, overexpressing the genes of both subunits, were constructed to facilitate the entry of pyruvate into the mitochondria and its incorporation into oxidative pathways. Significant overexpression of both genes, compared to the basal level of the control cells, was verified, and subcellular localization of both subunits in the mitochondria was confirmed. Kinetic evaluation of the best MPC overexpressing CHO cells showed a reduction of up to 50% in the overall yield of lactate production with respect to the control. An increase in specific growth rate and maximum viable cell concentration, as well as an increase of up to 40% on the maximum concentration of two recombinant model proteins transiently expressed (alkaline phosphatase or a monoclonal antibody), was also observed. Hybrid cybernetic modeling, that considered 89 reactions, 25 extracellular metabolites, and a network of 62 intracellular metabolites, explained that the best MPC overexpression case resulted in an increased metabolic flux across the mitochondrial membrane, activated a more balanced growth, and reduced the Warburg effect without compromising glucose consumption rate and maximum cell concentration. Overall, this study showed that transport of pyruvate into the mitochondria limits the efficiency of glucose oxidation, which can be overcome by a cell engineering approach.  相似文献   

18.
Stable expression of human insulin-like growth factor of binding protein-1 (hIGFBP-1)at high levels has been achieved in Chinese hamster ovary (CHO) cells by co-transfection and subsequent co-amplification of expression vectors containing the hIGFBP-1 cDNA and a dihydrofolate reductase (DHFR) cDNA gene into DHFR-deficient cells. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate (MTX) generated cells which had high copy numbers of the hIGFBP-1 gene (around 100 copies in cells amplified in medium containing 100 nM MTX). Expression of hIGFBP-1 in mixed clones was found to increase with increasing copy number and an apparent correlation between intra- and extracellular levels of hIGFBP-1 produced by these cells was observed. It was further observed that continuous cultivation over eight months in medium supplemented with 100 nM MTX increased the production of hIGFBP-1 25 times. The productivity did not increase further after five more months cultivation in MTX containing medium. A subcloning of this cell line gave clones with an even higher productivity. Further amplification in 500 nM or 1 uM MTX did not increase the hIGFBP-1 production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Seasonally regulated breeding is associated with significant changes in testis mass, structure and function. This includes the variation in size, structure and function of the Leydig cells. Recently, interstitial cells have been characterised as a numerically constant population in roe deer. However, no consistent data are available regarding changes in the number of Leydig cells, their differentiation or turnover in seasonally breeding mammals. This study has quantified the numbers of both proliferating and apoptotic cells in roe deer testis bimonthly during a complete annual cycle. Proliferation was detected by immunolocalisation of PCNA and Ki-67 in tissue sections, whereas apoptosis was localised by the TUNEL technique and an antibody to caspase-3. The labelled cells were counted by using a computer-aided image-analysing system. The number of proliferating spermatogenic cells per tubule cross section showed seasonal changes with a maximum in April (14.9±0.6) and a subsequent decline up to December (1.6±0.3). Percentages of positive cells per square millimetre of interstitial area were below 1% throughout the year. The average number of apoptotic cells per tubule cross section was low and varied only between 0.5 and 1.4 (caspase-3) or 0.1 and 2.1 (TUNEL). In the interstitial compartment, only a few apoptotic cells (0.7%) were found sporadically scattered within the intertubular region during all studied seasonal periods. The results suggest that a constant total number of interstitial cells arise from a conserved cell population of changing functional state rather than from a steady-state population with a definite turnover of cells during seasonal changes in testicular activity.The study was supported by a grant from the Deutsche Forschungsgemeinschaft (BL 319/6-2).  相似文献   

20.
In order to establish an easy and quick construction method for obtaining a stable and highly productive gene-amplified recombinant Chinese Hamster Ovary (CHO) cell line, variouskinds of stepwise methotrexate (MTX) selection were carriedout. The specific growth and production rates of the cell were compared with each other, and the distribution of the amplified gene location was determined using fluorescence in situ hybridization (FISH). The specific growth andproduction rates of the cell pool reached the highest levels under the selection condition in which the stepwise increase in the MTX concentration was most gradual; about 82% of amplified genes were observed near the telomeric region. During long-term cultivation without MTX, the percentage ofamplified genes near the telomeric region hardly changed, butthat of amplified genes at other regions decreased. Based on these results, stable and highly productive cell pools could be easily and quickly constructed and amplified and gradual stepwise increase of the MTX concentration. In addition, the FISH technique was powerful tool to evaluate highly productiveand stable gene-amplified cells based on the chromosomal location of the amplified gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号