共查询到20条相似文献,搜索用时 0 毫秒
1.
Clustering methods for microarray gene expression data 总被引:1,自引:0,他引:1
Within the field of genomics, microarray technologies have become a powerful technique for simultaneously monitoring the expression patterns of thousands of genes under different sets of conditions. A main task now is to propose analytical methods to identify groups of genes that manifest similar expression patterns and are activated by similar conditions. The corresponding analysis problem is to cluster multi-condition gene expression data. The purpose of this paper is to present a general view of clustering techniques used in microarray gene expression data analysis. 相似文献
2.
Jeff W Chou Tong Zhou William K Kaufmann Richard S Paules Pierre R Bushel 《BMC bioinformatics》2007,8(1):427
Background
A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. 相似文献3.
Qin ZS 《Bioinformatics (Oxford, England)》2006,22(16):1988-1997
MOTIVATION: Clustering microarray gene expression data is a powerful tool for elucidating co-regulatory relationships among genes. Many different clustering techniques have been successfully applied and the results are promising. However, substantial fluctuation contained in microarray data, lack of knowledge on the number of clusters and complex regulatory mechanisms underlying biological systems make the clustering problems tremendously challenging. RESULTS: We devised an improved model-based Bayesian approach to cluster microarray gene expression data. Cluster assignment is carried out by an iterative weighted Chinese restaurant seating scheme such that the optimal number of clusters can be determined simultaneously with cluster assignment. The predictive updating technique was applied to improve the efficiency of the Gibbs sampler. An additional step is added during reassignment to allow genes that display complex correlation relationships such as time-shifted and/or inverted to be clustered together. Analysis done on a real dataset showed that as much as 30% of significant genes clustered in the same group display complex relationships with the consensus pattern of the cluster. Other notable features including automatic handling of missing data, quantitative measures of cluster strength and assignment confidence. Synthetic and real microarray gene expression datasets were analyzed to demonstrate its performance. AVAILABILITY: A computer program named Chinese restaurant cluster (CRC) has been developed based on this algorithm. The program can be downloaded at http://www.sph.umich.edu/csg/qin/CRC/. 相似文献
4.
Azuaje F 《Briefings in bioinformatics》2003,4(1):31-42
This article focuses on clustering techniques for the analysis of microarray data and discusses contributions and applications for the implementation of intelligent diagnostic systems and therapy design studies. Approaches to validating and visualising expression clustering results and software and other relevant resources to support clustering-based analyses are reviewed. Finally, this paper addresses current limitations and problems that need to be investigated for the development of an advanced generation of pattern discovery tools. 相似文献
5.
Differential analysis of DNA microarray gene expression data 总被引:6,自引:0,他引:6
Here, we review briefly the sources of experimental and biological variance that affect the interpretation of high-dimensional DNA microarray experiments. We discuss methods using a regularized t-test based on a Bayesian statistical framework that allow the identification of differentially regulated genes with a higher level of confidence than a simple t-test when only a few experimental replicates are available. We also describe a computational method for calculating the global false-positive and false-negative levels inherent in a DNA microarray data set. This method provides a probability of differential expression for each gene based on experiment-wide false-positive and -negative levels driven by experimental error and biological variance. 相似文献
6.
A practical false discovery rate approach to identifying patterns of differential expression in microarray data 总被引:5,自引:0,他引:5
SUMMARY: Searching for differentially expressed genes is one of the most common applications for microarrays, yet statistically there are difficult hurdles to achieving adequate rigor and practicality. False discovery rate (FDR) approaches have become relatively standard; however, how to define and control the FDR has been hotly debated. Permutation estimation approaches such as SAM and PaGE can be effective; however, they leave much room for improvement. We pursue the permutation estimation method and describe a convenient definition for the FDR that can be estimated in a straightforward manner. We then discuss issues regarding the choice of statistic and data transformation. It is impossible to optimize the power of any statistic for thousands of genes simultaneously, and we look at the practical consequences of this. For example, the log transform can both help and hurt at the same time, depending on the gene. We examine issues surrounding the SAM 'fudge factor' parameter, and how to handle these issues by optimizing with respect to power. 相似文献
7.
MOTIVATION: Finding a small subset of most predictive genes from microarray for disease prediction is a challenging problem. Support vector machines (SVMs) have been found to be successful with a recursive procedure in selecting important genes for cancer prediction. However, it is not well understood how much of the success depends on the choice of the specific classifier and how much on the recursive procedure. We answer this question by examining multiple classifers [SVM, ridge regression (RR) and Rocchio] with feature selection in recursive and non-recursive settings on three DNA microarray datasets (ALL-AML Leukemia data, Breast Cancer data and GCM data). RESULTS: We found recursive RR most effective. On the AML-ALL dataset, it achieved zero error rate on the test set using only three genes (selected from over 7000), which is more encouraging than the best published result (zero error rate using 8 genes by recursive SVM). On the Breast Cancer dataset and the two largest categories of the GCM dataset, the results achieved by recursive RR are also very encouraging. A further analysis of the experimental results shows that different classifiers penalize redundant features to different extent and this property plays an important role in the recursive feature selection process. RR classifier tends to penalize redundant features to a much larger extent than the SVM does. This may be the reason why recursive RR has a better performance in selecting genes. 相似文献
8.
随着DNA芯片技术的广泛应用,基因表达数据分析已成为生命科学的研究热点之一。概述基因表达聚类技术类型、算法分类与特点、结果可视化与注释;阐述一些流行的和新型的算法;介绍17个最新相关软件包和在线web服务工具;并说明软件工具的研究趋向。 相似文献
9.
Clustering gene expression patterns. 总被引:23,自引:0,他引:23
Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. The corresponding algorithmic problem is to cluster multicondition gene expression patterns. In this paper we describe a novel clustering algorithm that was developed for analysis of gene expression data. We define an appropriate stochastic error model on the input, and prove that under the conditions of the model, the algorithm recovers the cluster structure with high probability. The running time of the algorithm on an n-gene dataset is O[n2[log(n)]c]. We also present a practical heuristic based on the same algorithmic ideas. The heuristic was implemented and its performance is demonstrated on simulated data and on real gene expression data, with very promising results. 相似文献
10.
MOTIVATION: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. RESULTS: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. AVAILABILITY: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request. 相似文献
11.
MOTIVATION: Hierarchical clustering is one of the major analytical tools for gene expression data from microarray experiments. A major problem in the interpretation of the output from these procedures is assessing the reliability of the clustering results. We address this issue by developing a mixture model-based approach for the analysis of microarray data. Within this framework, we present novel algorithms for clustering genes and samples. One of the byproducts of our method is a probabilistic measure for the number of true clusters in the data. RESULTS: The proposed methods are illustrated by application to microarray datasets from two cancer studies; one in which malignant melanoma is profiled (Bittner et al., Nature, 406, 536-540, 2000), and the other in which prostate cancer is profiled (Dhanasekaran et al., 2001, submitted). 相似文献
12.
Background
An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types. A number of algorithms have been proposed to obtain such classifications. These algorithms usually require parameter optimization to obtain accurate results depending on the type of data. Additionally, it is highly critical to find an optimal set of markers among those up or down regulated genes that can be clinically utilized to build assays for the diagnosis or to follow progression of specific cancer types. In this paper, we employ a mixed integer programming based classification algorithm named hyper-box enclosure method (HBE) for the classification of some cancer types with a minimal set of predictor genes. This optimization based method which is a user friendly and efficient classifier may allow the clinicians to diagnose and follow progression of certain cancer types.Methodology/Principal Findings
We apply HBE algorithm to some well known data sets such as leukemia, prostate cancer, diffuse large B-cell lymphoma (DLBCL), small round blue cell tumors (SRBCT) to find some predictor genes that can be utilized for diagnosis and prognosis in a robust manner with a high accuracy. Our approach does not require any modification or parameter optimization for each data set. Additionally, information gain attribute evaluator, relief attribute evaluator and correlation-based feature selection methods are employed for the gene selection. The results are compared with those from other studies and biological roles of selected genes in corresponding cancer type are described.Conclusions/Significance
The performance of our algorithm overall was better than the other algorithms reported in the literature and classifiers found in WEKA data-mining package. Since it does not require a parameter optimization and it performs consistently very high prediction rate on different type of data sets, HBE method is an effective and consistent tool for cancer type prediction with a small number of gene markers. 相似文献13.
How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes. Widely used methods typically rank genes according to their differential expressions among phenotypes and pick the top-ranked genes. We observe that feature sets so obtained have certain redundancy and study methods to minimize it. We propose a minimum redundancy - maximum relevance (MRMR) feature selection framework. Genes selected via MRMR provide a more balanced coverage of the space and capture broader characteristics of phenotypes. They lead to significantly improved class predictions in extensive experiments on 6 gene expression data sets: NCI, Lymphoma, Lung, Child Leukemia, Leukemia, and Colon. Improvements are observed consistently among 4 classification methods: Naive Bayes, Linear discriminant analysis, Logistic regression, and Support vector machines. SUPPLIMENTARY: The top 60 MRMR genes for each of the datasets are listed in http://crd.lbl.gov/~cding/MRMR/. More information related to MRMR methods can be found at http://www.hpeng.net/. 相似文献
14.
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis. 相似文献
15.
16.
Blachon S Pensa RG Besson J Robardet C Boulicaut JF Gandrillon O 《In silico biology》2007,7(4-5):467-483
The production of high-throughput gene expression data has generated a crucial need for bioinformatics tools to generate biologically interesting hypotheses. Whereas many tools are available for extracting global patterns, less attention has been focused on local pattern discovery. We propose here an original way to discover knowledge from gene expression data by means of the so-called formal concepts which hold in derived Boolean gene expression datasets. We first encoded the over-expression properties of genes in human cells using human SAGE data. It has given rise to a Boolean matrix from which we extracted the complete collection of formal concepts, i.e., all the largest sets of over-expressed genes associated to a largest set of biological situations in which their over-expression is observed. Complete collections of such patterns tend to be huge. Since their interpretation is a time-consuming task, we propose a new method to rapidly visualize clusters of formal concepts. This designates a reasonable number of Quasi-Synexpression-Groups (QSGs) for further analysis. The interest of our approach is illustrated using human SAGE data and interpreting one of the extracted QSGs. The assessment of its biological relevancy leads to the formulation of both previously proposed and new biological hypotheses. 相似文献
17.
18.
Philippe Bro?t Sylvia Richardson Fran?ois Radvanyi 《Journal of computational biology》2002,9(4):671-683
Recent developments in microarrays technology enable researchers to study simultaneously the expression of thousands of genes from one cell line or tissue sample. This new technology is often used to assess changes in mRNA expression upon a specified transfection for a cell line in order to identify target genes. For such experiments, the range of differential expression is moderate, and teasing out the modified genes is challenging and calls for detailed modeling. The aim of this paper is to propose a methodological framework for studies that investigate differential gene expression through microarrays technology that is based on a fully Bayesian mixture approach (Richardson and Green, 1997). A case study that investigated those genes that were differentially expressed in two cell lines (normal and modified by a gene transfection) is provided to illustrate the performance and usefulness of this approach. 相似文献
19.
Renée X Menezes Marten Boetzer Melle Sieswerda Gert-Jan B van Ommen Judith M Boer 《BMC bioinformatics》2009,10(1):203-15