首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The recent observation that ammonium sulfate stabilizes cell-surface [3H]cyclic AMP binding in Dictyostelium discoideum (Van Haastert, P., and Kien, E. (1983) J. Biol. Chem. 258, 9636-9642) led us to attempt to identify the surface cAMP receptor by photoaffinity labeling with 8-azido-[32P]cAMP using this stabilization technique. 8-azido-[32P]cAMP specifically labeled a polypeptide which migrates as a closely spaced doublet (Mr = 40,000 to 43,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Greater than 60% of the labeled polypeptide was found associated with membranes. This protein was distinguished from the cytosolic regulatory subunit of the cAMP-dependent protein kinase (Mr = 41,000) by differences in developmental regulation, specificity, and subcellular localization. No kinase regulatory subunit was detected in membranes by western blot analysis. Our preliminary observations show that labeling of this doublet correlates closely with cAMP-binding activity, suggesting that it is the surface receptor which mediates chemotaxis and cAMP signaling.  相似文献   

2.
J Bubis  S S Taylor 《Biochemistry》1987,26(19):5997-6004
Photoaffinity labeling of the regulatory subunits of cAMP-dependent protein kinase with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) has proved to be a very specific method for identifying amino acid residues that are in close proximity to the cAMP-binding sites. Each regulatory subunit contains two tandem cAMP-binding sites. The type II regulatory subunit (RII) from porcine heart was modified at a single site, Tyr-381 [Kerlavage, A., & Taylor, S.S. (1980) J. Biol. Chem. 255, 8483-8488]. When a proteolytic fragment of this RII subunit was photolabeled with 8-N3cAMP, two sites were covalently modified. One site corresponded to Tyr-381 and, thus, was analogous to the native RII. The other site of modification was identified as Tyr-196, which is not labeled in the native protein. Photoaffinity labeling was carried out in the presence of various analogues of cAMP that show a preference for one of the two tandem cAMP-binding sites. These studies established that the covalent modification of Tyr-381 was derived from 8-N3cAMP that was bound to the second cAMP-binding site (domain B) and that covalent modification to Tyr-196 was due to 8-N3cAMP that was bound to the first cAMP-binding site (domain A). These sites of covalent modification have been correlated with a model of each cAMP-binding site on the basis of the crystal structure of the catabolite gene activator protein (CAP), which is the major cAMP-binding protein in Escherichia coli.  相似文献   

3.
The photoaffinity reagent 8-azidoadenosine 3':5'-monophosphate (8-N3cAMP) was previously shown to modify a single tyrosine residue on the type II regulatory subunit of cAMP-dependent protein kinase (Kerlavage, A.R., and Taylor, S.S. (1980) J. Biol. Chem, 255, 8483-8488). In the present studies, the binding stoichiometries of type II holoenzyme for cAMP and 8-N3cAMP were determined using Millipore filtration assays in the absence (Assay A) and presence (Assay B) of 2 M NaCl and histone. The binding stoichiometry of holoenzyme for cAMP was 2 mol/mol with Assay A, and 4 mol/mol with assay B. The binding stoichiometry for 8-N3cAMP was 2 mol/mol with Assay B or with Assay A following photolysis of the holoenzyme:8-N3cAMP mixture. In the absence of photolysis, the binding stoichiometry for 8-N3cAMP was 0.4 mol/mol with Assay A. Both 8-N3cAMP and cAMP fully dissociated the holoenzyme. Holoenzyme, labeled with 8-N3[3H]cAMP on a preparative scale, incorporated 1 mol of 8-N3[3H]cAMP/mol of regulatory subunit (RII) monomer. The labeled RII was separated from catalytic subunit, cleaved with cyanogen bromide, and the resultant peptides were separated by high performance liquid chromatography. A single radioactive peptide was observed which had the same NH2 terminal residue and amino acid composition as the peptide obtained when dissociated RII was labeled with 8-N3cAMP.  相似文献   

4.
Each protomer of the regulatory subunit dimer of cAMP-dependent protein kinase contains two tandem and homologous cAMP-binding domains, A and B, and cooperative cAMP binding to these two sites promotes holoenzyme dissociation. Several amino acid residues in the type I regulatory subunit, predicted to lie in close proximity to each bound cyclic nucleotide based on affinity labeling and model building, were replaced using recombinant techniques. The mutations included replacement of 1) Glu-200, predicted to hydrogen bond to the 2'-OH of cAMP bound to site A, with Asp, 2) Tyr-371, the site of affinity labeling with 8-N3-cAMP in site B, with Trp, and 3) Phe-247, the position in site A that is homologous to Tyr-371 in site B, with Tyr. Each mutation caused an approximate 2-fold increase in both the Ka(cAMP) and Kd(cAMP); however, the off-rates for cAMP and the characteristic pattern of affinity labeling with 8-N3-cAMP differed markedly for each mutant protein. Furthermore, these mutations affect the cAMP binding properties not only of the site containing the mutation, but of the adjacent nonmutated site as well, thus confirming that extensive cross-communication occurs between the two cAMP-binding domains. Photoaffinity labeling of the native R-subunit results in the covalent modification of two residues, Trp-260 and Tyr-371, by 8-N3-cAMP bound to sites A and B, respectively, with a stoichiometry of 1 mol of 8-N3-cAMP incorporated per mol of R-monomer (Bubis, J., and Taylor, S. S. (1987) Biochemistry 26, 3478-3486). A stoichiometry of 1 mol of 8-N3-cAMP incorporated per R-monomer was observed for each mutant regulatory subunit as well, even when 2 mol of 8-N3-cAMP were bound per R-monomer; however, the major sites of covalent modification were altered as follows: R(Y371/W), Trp-371; R(E200/D), Tyr-371, and R(F247/Y), Tyr-371.  相似文献   

5.
Each regulatory subunit of cAMP-dependent protein kinase has two tandem cAMP-binding sites, A and B, at the carboxyl terminus. Based on sequence homologies with the cAMP-binding domain of the Escherichia coli catabolite gene activator protein, a model has been constructed for each cAMP-binding domain. Two of the conserved features of each cAMP-binding site are an arginine and a glutamic acid which interact with the negatively charged phosphate and with the 2'-OH on the ribose ring, respectively. In the type I regulatory subunit, this arginine in cAMP binding site A is Arg-209. Recombinant DNA techniques have been used to change this arginine to a lysine. The resulting protein binds cAMP with a high affinity and associates with the catalytic subunit to form holoenzyme. The mutant holoenzyme also is activated by cAMP. However, the mutant R-subunit binds only 1 mol of cAMP/R-monomer. Photoaffinity labeling confirmed that the mutant R-subunit has only one functional cAMP-binding site. In contrast to the native R-subunit which is labeled at Trp-260 and Tyr-371 by 8-N3cAMP, the mutant R-subunit is convalently modified at a single site, Tyr-371, which correlates with a functional cAMP-binding site B. The lack of functional cAMP-binding site A also was confirmed by activating the mutant holoenzyme with analogs of cAMP which have a high specificity for either site A or site B. 8-NH2-methyl cAMP which preferentially binds to site B was similar to cAMP in its ability to activate both mutant and wild type holoenzyme whereas N6-monobutyryl cAMP, a site A-specific analog, was a very poor activator of the mutant holoenzyme. The results support the conclusions that 1) Arg-209 is essential for cAMP binding to site A and 2) cAMP binding to domain A is not essential for dissociation of the mutant holoenzyme.  相似文献   

6.
cAMP is a mediator of inter- and intracellular events in Dictyostelium discoideum and is thought to act through specific receptors. Eight forms of cAMP-binding proteins have been described in this organism: four forms of a cell surface receptor, a cell surface and extracellular phosphodiesterase, an intracellular cAMP-dependent protein kinase (CAK), and a recently identified cAMP-binding protein (CABP1) that is present on the cell surface, in the cytoplasm, and in the nucleus. In this study we have analyzed the cyclic nucleotide specificity of these cAMP-binding proteins using 13 derivatives of cAMP with modifications in the adenine, ribose, and phosphate moiety. The results suggest that the cAMP-binding proteins belong to three groups: (i) four forms of the cell surface receptor, (ii) two forms of an intracellular receptor (CABP1 and CAK), and (iii) cell surface and extracellular phosphodiesterase. cAMP is probably bound to the surface receptors in the anti conformation in a hydrophobic cleft of the receptor with essential interactions at N6H2' and O3'. In contrast, cAMP is probably bound to CAK and CABP1 in the syn conformation with essential interactions at O2', O3', O5', and exocyclic oxygen. Finally, binding of cAMP to phosphodiesterase involves only O3' and exocyclic oxygen. The cyclic nucleotide specificity of cAMP-induced processes in D. discoideum indicates that the cell surface receptors participate in the transduction of the cAMP signal during chemotaxis and cell differentiation. Functions for CABP1 and CAK in these processes are presently elusive.  相似文献   

7.
We have recently identified a cell surface cAMP-binding protein by specific photoaffinity labeling of intact Dictyostelium discoideum cells with 8-N3-[32P] cAMP. The major photolabeled protein appears as a doublet (Mr = 40,000-43,000) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. In this study, the doublet is shown to have the characteristics of the cAMP receptor responsible for chemotaxis and cAMP signaling. Both specific photoaffinity labeling of the doublet and binding of 8-N3-[32P]cAMP are saturable (KD = 0.3 microM), the levels of both peak at 5 h, and both are inhibited by cAMP and several cAMP analogs in the same order of potency and with K1 values similar to those measured for inhibition of [3H]cAMP binding. When cAMP-binding activity was partially purified (40-fold) and then photoaffinity labeled, the same bands (Mr = 40,000-43,000) were observed. The relative intensities of the upper and lower bands of the doublet alternated at the same frequency as the spontaneous oscillations in cAMP synthesis. When oscillations were suppressed, the lower band of the doublet predominated. Following addition of cAMP, the relative intensity gradually shifted to the upper band. When cAMP was removed, there was a gradual restoration of the lower band form. We propose that the lower band form of the receptor activates chemotaxis and cAMP signaling and that the upper band form does not. This reversible receptor modification may then be the mechanism of adaptation, the process by which the physiological responses cease to be stimulated by persistent cAMP. Several developmentally regulated genes in D. discoideum have been reported to be induced or suppressed by pulses of cAMP (adaptive regulation) and others by continuous cAMP (nonadaptive regulation). These observations may be explained by the receptor modification reported here if the two forms of the receptor, which bind cAMP with the same affinity, independently influence gene expression.  相似文献   

8.
J Bubis  S S Taylor 《Biochemistry》1985,24(9):2163-2170
Reconstituted porcine cAMP-dependent protein kinase type I was labeled with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) to study cyclic nucleotide binding and to identify amino acid residues that are either in or in close proximity to the cAMP binding sites. The photoaffinity analogue 8-N3cAMP behaved as cAMP itself with respect to cyclic nucleotide binding. For both cAMP and 8-N3cAMP, 2 mol of nucleotide was bound per mole of type I regulatory subunit monomer (RI), the apparent Kd's observed were approximately 10-17 nM on the basis of either Millipore filtration assays, equilibrium dialysis, or ammonium sulfate precipitation, Scatchard plots showed positive cooperativity, and (4) the Hill coefficients were approximately 1.5-1.6. After photolysis and addition of an excess of cAMP, approximately 1 mol of 8-N3cAMP/mol of RI monomer was covalently incorporated. Tryptic digestion of the labeled protein revealed that two unique tryptic peptides were modified. Proline-271 and tyrosine-371 were identified as the two residues that were covalently modified by 8-N3cAMP in RI. These results contrast with the type II regulatory subunit (RII) where 8-N3cAMP modified covalently a single tyrosine residue [Kerlavage, A. R., & Taylor, S. S. (1980) J. Biol. Chem. 255, 8483-8488]. RI contains two adjacent regions of sequence homology in the COOH-terminal fragment that binds two molecules of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two protein bands, present in cytosol fractions from each of seven rat tissues examined, specifically incorporated 32P-labeled 8-azidoadenosine 3':5'-monophosphate (8-N3-[32P]cAMP), a photoaffinity label for cAMP-binding sites. These proteins had apparent molecular weights of 47,000 and 54,000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. These two proteins were characterized in three of the tissues, namely, heart, uterus, and liver, by the total amount of 8-N3-[32P]cAMP incorporation, by the dissociation constant (Kd) for 8-N3-[32P]cAMP, and by the nucleotide specific inhibition of 8-N3-[32P]cAMP incorporation. Several lines of evidence were obtained that the protein with an apparent molecular weight of 47,000 represents the regulatory subunit of a type I cAMP-dependent protein kinase, while the protein with an apparent molecular weight of 54,000 represents the regulatory subunit of a type II cAMP-dependent protein kinase. Almost all of the cAMP receptor protein found in the cytosol of these tissues, as measured by 8-N3-[32P]cAMP incorporation, was associated with these two protein kinases, in agreement with the idea that most effects of cAMP are mediated through protein kinases. The photoaffinity labeling with 8-N3-[32P]cAMP can be used to estimate quantitatively the amounts of regulatory subunit of type I and type II cAMP-dependent protein kinases in various tissues.  相似文献   

10.
Several methods were compared for estimating the amount of regulatory subunit of an 800-fold purified Type II cAMP-dependent protein kinase from bovine heart. These methods included a reversable binding assay using either cAMP, or 8-N3-[32P]cAMP, photoaffinity labeling with 8-N3-[32P]cAMP, and autophosphorylation of the regulatory subunit of the enzyme. Although the regulatory subunit had a slightly lower affinity for 8-N3-cAMP than for cAMP, the total amount of regulatory subunit could be determined by each of the procedures examined. The results indicate that the photoaffinity analog 8-N3-[32P]cAMP is able to label quantitatively all cAMP-binding sites of the regulatory subunit of this cAMP-dependent protein kinase.  相似文献   

11.
cAMP sites of the cAMP-dependent protein kinase from the fungus Mucor rouxii have been characterized through the study of the effects of cAMP and of cAMP analogs on the phosphotransferase activity and through binding kinetics. The tetrameric holoenzyme, which contains two regulatory (R) and two catalytic (C) subunits, exhibited positive cooperativity in activation by cAMP, suggesting multiple cAMP-binding sites. Several other results indicated that the Mucor kinase contained two different cooperative cAMP-binding sites on each R subunit, with properties similar to those of the mammalian cAMP-dependent protein kinase. Under optimum binding conditions, the [3H]cAMP dissociation behavior indicated equal amounts of two components which had dissociation rate constants of 0.09 min-1 (site 1) and 0.90 min-1 (site 2) at 30 degrees C. Two cAMP-binding sites could also be distinguished by C-8 cAMP analogs (site-1-selective) and C-6 cAMP analogs (site-2-selective); combinations of site-1- and site-2-selective analogs were synergistic in protein kinase activation. The two different cooperative binding sites were probably located on the same R subunit, since the proteolytically derived dimeric form of the enzyme, which contained one R and one C component, retained the salient properties of the untreated tetrameric enzyme. Unlike any of the mammalian cyclic-nucleotide-dependent isozymes described thus far, the Mucor kinase was much more potently activated by C-6 cAMP analogs than by C-8 cAMP analogs. In the ternary complex formed by the native Mucor tetramer and cAMP, only the two sites 1 contained bound cAMP, a feature which has also not yet been demonstrated for the mammalian cAMP-dependent protein kinase.  相似文献   

12.
Polysphondylium pallidum is a cellular slime mold in which, unlike in Dictyostelium discoideum, cAMP is not the chemotactic agent. The occurrence of a cAMP-dependent protein kinase in D. discoideum was demonstrated earlier and we suggested that it may mediate the intracellular effects of cAMP on the development of the organism, particularly since an increase in the amount of the enzyme during development was noted. In D. discoideum cAMP plays a dual role insofar as it serves both as chemotactic agent and as second messenger; it was of interest therefore, to determine whether a cAMP-dependent protein kinase occurred in P. pallidum. We found a cAMP-dependent protein kinase in P. pallidum using Kemptide as substrate. The regulatory subunit of the enzyme has an apparent molecular weight of 41,000 and seems to be similar in its properties with that isolated earlier from D. discoideum. The cAMP-dependent protein kinase catalytic subunits from the two species are also similar. Furthermore, there is a developmentally regulated, parallel, two- to threefold increase in the two subunits of the cAMP-dependent protein kinase in P. pallidum. The increase occurs before aggregates are formed. These findings are compatible with a role of the intracellular cAMP and of the cAMP-dependent protein kinase in the development of P. pallidum.  相似文献   

13.
Five major cAMP-binding proteins that differ in size and charge have been identified in neurons of Aplysia californica by photoaffinity labeling with [32P]8-N3cAMP. These proteins, which we believe are regulatory subunits of cAMP-dependent protein kinase, all differ from the major cAMP-binding protein of buccal muscle. We have compared the structures of these proteins by peptide mapping after chemical and proteolytic cleavage. These analyses indicate that the five binding proteins from nervous tissue and the major muscle protein are closely related to each other. For example, the three neuronal proteins that are most alike and the cAMP-binding protein from muscle have a similar, if not identical, Mr 20,000 domain that contains the 8-N3cAMP-binding site; beyond this domain they diverge. All six proteins appear to belong to a family in which homologous regions have been conserved to maintain common functions. We suggest that the regions of the molecules that differ mediate special functions such as ticketing to particular compartments of the cell. Evidence for regional assortment of the cAMP-dependent protein kinases according to structural type was afforded by subcellular fractionation of Aplysia nervous tissue; photoaffinity labeling of cytoplasm, cytoskeleton, and membrane fractions demonstrated a differential distribution of the five neuronal cAMP-binding proteins. Selective phosphorylation of specific substrates could be a consequence of the compartmentation of diverse cAMP-dependent kinases.  相似文献   

14.
Adenylate cyclase and cAMP-dependent protein kinase activities in gametocytogenic (LE5) and nongametocytogenic (T9/96) clones of Plasmodium falciparum were compared to explore the role of cAMP in sexual differentiation of the parasite. Basal adenylate cyclase levels were equivalent in the 2 clones. However, cAMP-dependent histone II-A kinase activity was significantly higher in LE5 than in T9/96 over a range of cAMP concentrations. This difference was due to a decreased Vmax for the enzyme in the nongametocytogenic clone and not to an increased Ka for cAMP. Examination of parasite cAMP-binding proteins, likely to be kinase regulatory subunits, by both photoaffinity labeling with [32P]8-N3-cAMP and affinity chromatography of metabolically [35S]methionine-labeled cytosol of cAMP-agarose revealed a 53-kDa cAMP binding protein in both clones and a 49-kDa cAMP-binding protein in T9/96 that was absent in LE5. Our results suggest that T9/96 has lost the ability to undergo gametocytogenesis due to a substantial decrease in cAMP-dependent protein kinase activity rendering the parasite unable to respond to increased intracellular cAMP levels. Moreover, the reduction in cAMP-dependent protein kinase activity may be due to the presence of an alternative regulatory subunit of the kinase.  相似文献   

15.
G Müller  W Bandlow 《Biochemistry》1989,28(26):9957-9967
A cAMP-binding protein is found to be integrated into the inner mitochondrial membrane of the yeast Saccharomyces cerevisiae under normal conditions. It resists solubilization by high salt and chaotropic agents. The protein is, however, converted to a soluble form which then resides in the intermembrane space, when isolated mitochondria are incubated with low concentrations of calcium. Phospholipids or diacylglycerol (or analogues) dramatically increases the efficiency of receptor release from the inner membrane, whereas these compounds alone are ineffective. Also, cAMP does not effect or enhance liberation from the membrane of the cAMP-binding protein. Photoaffinity labeling with 8-N3-[32P]cAMP followed by mitochondrial subfractionation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis does not reveal differences in the apparent molecular weight between the membrane-bound and the soluble form of the cAMP receptor. The two forms differ, however, in their partitioning behavior in Triton X-114 as well as in their protease resistance, indicating that the release from the membrane is accompanied by a change in lipophilicity and conformation of the receptor protein. Evidence is presented that a change of the intramitochondrial location of the yeast cAMP-binding protein also occurs in vivo and leads to the activation of a mitochondrial cAMP-dependent protein kinase. The cAMP-binding protein is the first example of a mitochondrial protein with amphitropic character; i.e., it has the property to occur in two different locations, as a membrane-embedded and a soluble form.  相似文献   

16.
Homogenous regulatory subunit from rabbit skeletal muscle cAMP-dependent protein kinase (isozyme I) was partially hydrolyzed with low (1 g/1300 g) or high (1 g/6 g) concentrations of trypsin. After treatment with low trypsin two main peptides (Mr = 35,000 and 12,000) were produced. The cAMP-binding activity (2 mol cAMP/mol of subunit monomer) was recovered in the monomeric Mr = 35,000 peptide. The ability of either fragment to inhibit catalytic subunit activity was lost. Treatment of the regulatory subunit with a high concentration of trypsin yielded three main fragments (Mr = 32,000, 16,000, and 6,000) which could be resolved by Sephadex G-75 and purified further on DEAE-cellulose columns. One of the peptides (Mr = 32,000) bound 2 mol cAMP/mol fragment. The Mr = 16,000 fragment was very labile and bound cAMP with an undetermined stoichiometry. Cyclic AMP dissociation curves for the native regulatory subunit and its Mr = 32,000 component were similar and suggested the presence of two nonidentical binding sites in each monomer. Using the same procedure, the Mr = 16,000 fragment or homogenous cGMP-dependent protein kinase appeared to contain a single type of binding site. Purified Mr = 32,000 fragment was readily converted to the Mr = 16,000 fragment using high trypsin as assessed by protein bands on SDS-disc gels or by following transfer of radioactivity from Mr = 32,000 peptide covalently labeled with 8-N3-[32P] cAMP to radiolabeled Mr = 16,000 fragment. The smallest regulatory subunit fragment (Mr = 6,000) did not bind cAMP, but was dimeric and could be part of the dimerization domain in the native protein. A model is presented to explain the possible structural-functional relationships of the regulatory subunit.  相似文献   

17.
The concentration of regulatory subunits (R) of type II cAMP-dependent protein kinase increased 4- to 5-fold when Friend erythroleukemic cells were either grown in medium containing 0.5 mM 8-bromo-cAMP and 0.2 mM methylisobutylxanthine or stimulated to differentiate. Two species of RII with apparent Mr values of 54,000 (RII-54) and 52,000 (RII-52) are expressed in Friend cells. Both forms of RII were (a) covalently labeled with 8-N3-[32P]cAMP, (b) phosphorylated by the catalytic subunit of protein kinase II, and (c) complexed by polyclonal anti-RII IgGs. RII-52 and RII-54 were not interconverted by phosphorylation or dephosphorylation. A monoclonal antibody that recognizes an internal site in RII resolved the two cAMP-binding proteins by preferentially binding RII-54. The structural diversity suggested by the monoclonal antibody experiment was further examined by comparing two-dimensional maps of tryptic peptides obtained from metabolically labeled [( 35S]met) RII-52 and RII-54. Groups of 35S-labeled peptides that were either uniquely derived from RII-54 or obtained only from RII-52 were readily distinguished, thereby demonstrating that Friend cells produce two separate and distinct forms of type II cAMP-binding subunits. The relative rate of synthesis of RII-52 increased 12- to 14-fold during erythroid differentiation and treatment with 8-bromo-cAMP, while the rate of RII-54 synthesis either declined slowly or was unchanged. Thus, two homologous forms of RII are subject to different modes of physiological (differentiation) and pharmacological (chronic 8-Br-cAMP) regulation, and the accumulation of total RII observed in the present and previous (Schwartz, D. A., and Rubin, C. S. (1983) J. Biol. Chem. 258, 777-784) studies results from a selective increase in the rate of biosynthesis of RII-52.  相似文献   

18.
Retinoylation (retinoic acid acylation) is a post-translational modification of proteins occurring in a variety of eukaryotic cell lines. There are at least 20 retinoylated proteins in the human myeloid leukemia cell line HL60 (N. Takahashi and T.R. Breitman (1990) J. Biol. Chem. 265, 19, 158-19, 162). Here we found that some retinoylated proteins may be cAMP-binding proteins. Five proteins, covalently labeled by 8-azido-[32P]cAMP which specifically reacts with the regulatory subunits of cAMP-dependent protein kinase, comigrated on two-dimensional polyacrylamide gel electrophoresis with retinoylated proteins of Mr 37,000 (p37RA), 47,000 (p47RA), and 51,000 (p51RA) labeled by [3H]retinoic acid treatment of intact cells. Furthermore, p47RA coeluted on Mono Q anion exchange chromatography with the type I cAMP-dependent protein kinase holoenzyme and p51RA coeluted on Mono Q anion exchange chromatography with the type II cAMP-dependent protein kinase holoenzyme. An antiserum specific to RI, the cAMP-binding regulatory subunit of type I cAMP-dependent protein kinase, immunoprecipitated p47RA. An antiserum specific to RII, the cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase, immunoprecipitated p51RA. These results indicate that both the RI and the RII regulatory subunits of cAMP-dependent protein kinase are retinoylated. Thus, an early event in RA-induced differentiation of HL60 cells may be the retinoylation of subpopulations of both RI and RII.  相似文献   

19.
Neurohormones and drugs that alter in vitro tracheal electrolyte transport and mucus glycoprotein secretion were examined for their ability to alter cyclic nucleotide accumulation in a smooth muscle-free preparation of rabbit tracheal mucosa-submucosa. cAMP levels were increased by beta-adrenergic agonists, histamine, 2-Cl-adenosine and prostaglandin E1. cGMP levels were increased by carbachol. The phosphodiesterase inhibitor isobutylmethylxanthine increased cAMP and cGMP levels and potentiated only the beta-adrenergic effects. The beta-adrenergic effects were blocked by (+/-)-propranolol and the effects of histamine by diphenhydramine, atropine and (+/-)-propranolol. Atropine blocked the carbachol effects. The isolated surface epithelium from rabbit trachea had higher basal cAMP levels and greater response to beta-adrenergic agonists and isobutylmethylxanthine than the mucosa-submucosa. Two major cAMP-binding proteins in the tracheal mucosa-submucosa were identified with the photoaffinity label 8-N3-[32P]cAMP. Agents that increased cAMP levels also decreased photoaffinity labelling, suggesting that these two cAMP-binding proteins were being occupied in the intact cell. The molecular weights of the proteins were 50 000 and 54 000 and correspond in electrophoretic mobility to the regulatory subunits of Type-I and Type-II cAMP-dependent protein kinases, respectively. The results are consistent with the hypothesis that epithelial functions in the airways are modulated by a number of agonists which increase cyclic nucleotide levels. The effects of beta-adrenergic agonists is apparently mediated by activation of adenylate cyclase and subsequent activation of cAMP-dependent protein kinases.  相似文献   

20.
The regulatory subunit of type II cAMP-dependent proteinkinase was isolated from cytosol of the rabbit small intestinal mucosa by affinity chromatography. The preparation contained 3 proteolytic enzymes and occurred in two forms differing as regards cAMP affinity. The cAMP-binding capacity of the preparation was equal to 17 nmol cAMP/mg protein. To study the topography of the cAMP-binding center, use was made of cAMP analogs. It was demonstrated that introduction of the substituents into the 8th position of the purine ring and substitution with respect to the N6-exoaminogroup affected insignificantly the analog affinity for the cAMP-binding center. At the same time the substituents introduced into the first position of the adenine base, into the area of the 2'-hydroxyl group of ribose and into the cyclophosphate part of the cAMP molecule considerably decreased the analog affinity for the regulatory center of type II cAMP-dependent proteinkinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号