首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Ruthenium Red-insensitive Ca2+ transport in the mouse ascites sarcoma 180/TG is enriched in a 'heavy' microsomal fraction (microsomes) sedimented at 35 000 g for 20 min. The subcellular distribution of this Ca2+ transport differed from that of Ruthenium Red-sensitive Ca2+ transport and (Na+ + K+)-dependent ATPase activity, but was similar to that of glucose 6-phosphatase. 2. The affinity of this transport system for 'free' Ca2+ is high (Km approx. 6 microM) and that for MgATP somewhat lower (Km approx. 100 microM). Ca2+ transport by the tumour microsomes, by contrast with that by liver microsomes, was greatly stimulated by low concentrations of P1. 3. Although incubation of intact ascites cells with glucagon led to an increase in intracellular cyclic AMP, no stable increase in the initial rate of Ca2+ transport in the subsequently isolated 'heavy' microsomes could be detected as in similar experiments carried out previously with rat liver cells. Reconstitution experiments suggest that a deficiency exists in the tumour microsomal membrane such that an action of glucagon that is normally present in rat liver microsomes is not evoked.  相似文献   

2.
The maturation of glucagon-stimulated Ruthenium Red-insensitive Ca2+-transport activity was determined in livers of rats ranging in age from 5 days preterm to 10 weeks of adult life. Previous indications are that this activity is confined to vesicles derived mainly from the endoplasmic reticulum. Perinatal-rat liver contains near-adult values of Ruthenium Red-insensitive Ca2+-transport activity, and exhibits large transient increases in the rate of this activity at two stages of development, immediately after birth, and at 2-5 days after birth. The administration of glucagon to foetal rats, at developmental stages after 19.5 days of gestation (2.5 days before birth), results in a large stable increase (greater than 100%) of Ca2+-transport activity in a subsequently isolated 'heavy' microsomal fraction. That this fraction was enriched in vesicles derived from the rough endoplasmic reticulum was indicated by both an electron-microscopic examination and a marker-enzyme analysis of the subcellular fractions. The administration of glucagon into newborn animals only hours old does not enhance further the initial rate of Ca2+-transport activity, and from day 1 to 10 weeks after birth the administration of the hormone results in the moderate enhancement of Ca2+ transport. Experiments with cyclic AMP and inhibitors of phosphodiesterase activity suggest that cyclic AMP plays a key role in the enhancement by glucagon of Ruthenium Red-insensitive Ca2+ transport, and arguments are presented that this transport system has an important metabolic role in the redistribution of intracellular Ca2+ in liver tissue.  相似文献   

3.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5'-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at approximately 10 microM vanadate, corresponding to approximately 12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

4.
Mechanisms regulating the energy-dependent calcium sequestering activity of liver microsomes were studied. The possibility for a physiologic mechanism capable of entrapping the transported Ca2+ was investigated. It was found that the addition of glucose 6-phosphate to the incubation system for MgATP-dependent microsomal calcium transport results in a marked stimulation of Ca2+ uptake. The uptake at 30 min is about 50% of that obtained with oxalate when the incubation is carried out at pH 6.8, which is the pH optimum for oxalate-stimulated calcium uptake. However, at physiological pH values (7.2-7.4), the glucose 6-phosphate-stimulated calcium uptake is maximal and equals that obtained with oxalate at pH 6.8. The Vmax of the glucose 6-phosphate-stimulated transport is 22.3 nmol of calcium/mg protein per min. The apparent Km for calcium calculated from total calcium concentrations is 31.9 microM. After the incubation of the system for MgATP-dependent microsomal calcium transport in the presence of glucose 6-phosphate, inorganic phosphorus and calcium are found in equal concentrations, on a molar base, in the recovered microsomal fraction. In the system for the glucose 6-phosphate-stimulated calcium uptake, glucose 6-phosphate is actively hydrolyzed by the glucose-6-phosphatase activity of liver microsomes. The latter activity is not influenced by concomitant calcium uptake. Calcium uptake is maximal when the concentration of glucose 6-phosphate in the system is 1-3 mM, which is much lower than that necessary to saturate glucose-6-phosphatase. These results are interpreted in the light of a possible cooperative activity between the energy-dependent calcium pump of liver microsomes and the glucose-6-phosphatase multicomponent system. The physiological implications of such a cooperation are discussed.  相似文献   

5.
The following enzymes have been studied (subcellular fractions are shown between parentheses): NAG and beta-glucuronidase (lysosomes); SDH (mitochondrial); glucose-6-phosphatase (endoplasmic reticulum); 5'-nucleotidase and (Na+, K+)Mg2+ ATPase (plasma membranes). Alterations on their activities were observed after subcutaneous injection of sex hormones, compared with controls. NAG activity from liver was always significantly decreased in lysosomal and microsomal fractions after the hormonal treatment. In the same conditions, NAG from brain was always increased. beta-Glucuronidase behaves like NAG in brain; in liver it was not modified by testosterone and it was slightly increased in lysosomal fraction after oestradiol treatment. SDH activity was not modified in mitochondrial fractions from liver, but this activity was always significantly increased in brain. Glucose-6-phosphatase activity was always significantly decreased in microsomal fractions from liver. It was increased in brain after oestradiol and testosterone injection, but medroxyprogesterone treatment caused a decreased activity. 5'-Nucleotidase and (Na+, K+)Mg2+ ATPase from brain were significantly increased in microsomal fractions by oestradiol and testosterone. Medroxyprogesterone, however, caused an increase in ATPase, but did not affect 5'-nucleotidase. Both activities in liver were decreased by oestradiol and increased by testosterone, but medroxyprogesterone caused (Na+, K+)Mg2+ ATPase to rise and 5'-nucleotidase to fall.  相似文献   

6.
The addition of G-6-Pi to the incubation system for MgATP-dependent calcium transport in liver microsomes results in a marked stimulation of Ca2+ uptake. At physiological pH values (7.2-7.4), the G-6-Pi stimulated calcium uptake is maximal and equals that obtained with oxalate at pH 6.8. In the system for the G-6-Pi-stimulated calcium uptake, G-6-Pi is actively hydrolyzed by the glucose 6-phosphatase activity of liver microsomes. Such an activity is not influenced by the concomitant calcium uptake. After the incubation of the system for the MgATP-dependent microsomal calcium transport in the presence of G-6-Pi, Pi and calcium are found in equal concentrations, on a molar base, in the recovered microsomal fraction. These results are interpreted in the light of a possible cooperative activity between the energy-dependent calcium pump of liver microsomes and the glucose 6-phosphatase multicomponent system.  相似文献   

7.
EGTA (ethanedioxybis(ethylamine)tetra-acetic acid) induced a release of Ca2+ from mitochondria isolated from both rat liver and rat heart that was inhibited by Ruthenium Red. The concentration of Ruthenium Red giving half-maximal inhibition was about 350 pmol/mg of protein, a value approximately 7 times greater than that giving half-maximal inhibition of the initial rate of Ca2+ transport. The EGTA-induced release of Ca2+ was temperature-dependent and was inhibited by the local anaesthetic, nupercaine.Pi, acetate, and tributyltin in the presence of Cl?, inhibited the Ruthenium Red-sensitive Ca2+ release induced by EGTA, whereas these agents enhanced the Ruthenium Red-insensitive release of Ca2+ induced by acetoacetate in liver and heart mitochondria and by Na+ in heart mitochondria.  相似文献   

8.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5′-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at ~10 μM vanadate, corresponding to ~12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

9.
We studied the effects of various glucocorticoids, glucagon and insulin on the activity of rat liver microsomal glucose-6-phosphatase. Preincubation of microsomes with corticosterone, cortisone, cortisol and dexamethasone as well as glucagon increased the rate of glucose-6-phosphate hydrolysis by about 1.5 fold relative to the controls. The maximum activation occurred at about 10 nM steroids and 0.3 nM glucagon, respectively. On the other hand, increasing concentrations (8.3 – 50 nM) of insulin progressively inhibited glucose-6-phosphatase up to 26%; the activity of which, however, remains completely in a latent state within the microsomal membrane and can be released from it by Triton treatment. In terms of the substrate transport hypothesis, the results are interpreted as evidence that regulation of glucose-6-phosphate hydrolysis is achieved by direct interactions either of the hormones themselves or of a possible second messenger with the carrier moiety of the rat liver microsomal glucose-6-phosphatase system.  相似文献   

10.
An EGTA (ethanedioxybis(ethylamine)tetra-acetic acid)-quench technique was developed for measuring initial rates of (45)Ca(2+) transport by rat liver mitochondria. This method was used in conjunction with studies of Ca(2+)-stimulated respiration to examine the mechanisms of inhibition of Ca(2+) transport by the lanthanides and Ruthenium Red. Ruthenium Red inhibits Ca(2+) transport non-competitively with K(i) 3x10(-8)m; there are 0.08nmol of carrier-specific binding sites/mg of protein. The inhibition by La(3+) is competitive (K(i)=2x10(-8)m); the concentration of lanthanide-sensitive sites is less than 0.001nmol/mg of protein. A further difference between their modes of action is that lanthanide inhibition diminishes with time whereas that by Ruthenium Red does not. Binding studies showed that both classes of inhibitor bind to a relatively large number of external sites (probably identical with the ;low-affinity' Ca(2+)-binding sites). La(3+) competes with Ruthenium Red for most of these sites, but a small fraction of the bound Ruthenium Red (less than 2nmol/mg of protein) is not displaced by La(3+). The results are discussed briefly in relation to possible models for a Ca(2+) carrier.  相似文献   

11.
Translocon pores in the endoplasmic reticulum are permeable to small anions   总被引:1,自引:0,他引:1  
Contribution of translocon peptide channels to the permeation of low molecular mass anions was investigated in rat liver microsomes. Puromycin, which purges translocon pores of nascent polypeptides, creating additional empty pores, raised the microsomal uptake of radiolabeled UDP-glucuronic acid, while it did not increase the uptake of glucose-6-phosphate or glutathione. The role of translocon pores in the transport of small anions was also investigated by measuring the effect of puromycin on the activity of microsomal enzymes with intraluminal active sites. The mannose-6-phosphatase activity of glucose-6-phosphatase and the activity of UDP-glucuronosyltransferase were elevated upon addition of puromycin, but glucose-6-phosphatase and -glucuronidase activities were not changed. The increase in enzyme activities was due to a better access of the substrates to the luminal compartment rather than to activation of the enzymes. Antibody against Sec61 translocon component decreased the activity of UDP-glucuronosyltransferase and antagonized the effect of puromycin. Similarly, the addition of the puromycin antagonist anisomycin or treatments of microsomes, resulting in the release of attached ribosomes, prevented the puromycin-dependent increase in the activity. Mannose-6-phosphatase and UDP-glucuronosyltransferase activities of smooth microsomal vesicles showed higher basal latencies that were not affected by puromycin. In conclusion, translationally inactive, ribosome-bound translocons allow small anions to cross the endoplasmic reticulum membrane. This pathway can contribute to the nonspecific substrate supply of enzymes with intraluminal active centers. puromycin; UDP-glucuronosyltransferase; glucose-6-phosphatase; -glucuronidase  相似文献   

12.
Oculocerebrorenal syndrome of Lowe (OCRL) gene product is a phosphatidyl inositol 4,5-bisphosphate [PI(4,5)P(2)] 5-phosphatase, and mutations of OCRL cause Lowe syndrome and Dent disease, both of which are frequently associated with hypercalciuria. Transient receptor potential, vanilloid subfamily, subtype 6 (TRPV6) is an intestinal epithelial Ca(2+) channel mediating active Ca(2+) absorption. Hyperabsorption of Ca(2+) was found in patients of Dent disease with increased Ca(2+) excretion. In this study, we tested whether TRPV6 is regulated by OCRL and, if so, to what extent it is altered by Dent-causing OCRL mutations using Xenopus laevis oocyte expression system. Exogenous OCRL decreased TRPV6-mediated Ca(2+) uptake by regulating the function and trafficking of TRPV6 through different domains of OCRL. The PI(4,5)P(2) 5-phosphatase domain suppressed the TRPV6-mediated Ca(2+) transport likely through regulating the PI(4,5)P(2) level needed for TRPV6 function without affecting TRPV6 protein abundance of TRPV6 at the cell surface. The forward trafficking of TRPV6 was decreased by OCRL. The Rab binding domain in OCRL was involved in regulating the trafficking of TRPV6. Knocking down endogenous X. laevis OCRL by antisense approach increased TRPV6-mediated Ca(2+) transport and TRPV6 forward trafficking. All seven Dent-causing OCRL mutations examined exhibited alleviation of the inhibitory effect on TRPV6-mediated Ca(2+) transport together with decreased overall PI(4,5)P(2) 5-phosphatase activity. In conclusion, OCRL suppresses TRPV6 via two separate mechanisms. The disruption of PI(4,5)P(2) 5-phosphatase activity by Dent-causing mutations of OCRL may lead to increased intestinal Ca(2+) absorption and, in turn, hypercalciuria.  相似文献   

13.
The effects of Ca2+ on the microsomal glucose-6-phosphatase activity were investigated. Evidence is provided that increases by Ca2+ in both the pyrophosphatase and the glucose-6-phosphate-hydrolysing activities are due to an increase in microsomal transport capacity of T2, the phosphate/pyrophosphate-transport protein.  相似文献   

14.
1. A novel technique for the subfractionation of rat liver smooth and rough microsomal fractions according to their content of glucose 6-phosphatase is described. This technique, based on the Gomori lead histochemical procedure, involves incubation of smooth and rough microsomal fractions with low concentrations of Pb(NO(3))(2) and glucose 6-phosphate. Control experiments, in which enzyme was assayed in the presence of various amounts of Pb(NO(3))(2) or in which microsomal fractions were reisolated after incubation with low concentrations of Pb(NO(3))(2) and glucose 6-phosphate, showed that lead does not interfere with glucose 6-phosphatase activity. 2. Discontinuous sucrose-density-gradient centrifugation of microsomal fractions which had previously been incubated with various amounts of Pb(NO(3))(2) and glucose 6-phosphate showed that it is possible to subfractionate both smooth- and rough-microsomal fractions into several bands, owing to a differential modification of the density of the microsomal vesicles by the trapping of lead phosphate within them. 3. When the material in the bands obtained by density-gradient centrifugation of incubated microsomal fractions was assayed for glucose 6-phosphatase activity, it was found that the modification of the density of the microsomal fractions was directly related to their relative enrichment in glucose 6-phosphatase activity. Control experiments, in which microsomal fractions were incubated with Pb(NO(3))(2) and glucose 6-phosphate and then treated with EDTA, showed that the subfractionation was not due to aggregation of microsomal vesicles, lead and glucose 6-phosphate. Thus the resolution of microsomal preparations into subfractions with different glucose 6-phosphatase activities is interpreted as indicating heterogeneity of glucose 6-phosphatase distribution in the microsomal vesicles. 4. Electron micrographs of both smooth- and rough-microsomal subfractions show deposits of lead phosphate within the microsomal vesicles. The frequency and extent of these deposits correlate with the different amounts of glucose 6-phosphatase activity measured biochemically. 5. The nature of the heterogeneous distribution of glucose 6-phosphatase is discussed and the more general applicability of the technique for studying membrane fractions containing a heterogeneous distribution of phosphatases is indicated.  相似文献   

15.
Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of Ruthenium Red to energized rat liver mitochondria that have previously accumulated Ca2+ and phosphate from the external medium induces a parallel efflux of both these ions. Mersalyl or dithioerythritol, which decrease Ruthenium Red-insensitive Ca2+ efflux, also decrease phosphate efflux to the same extent. Conversely diazenedicarboxylic acid bis(NN-dimethylamide) (DDBA), which increases the Ruthenium Red-induced Ca2+ efflux concurrently increases phosphate release. Dithioerythritol and DDBA, reducing and oxidizing agents of thiol groups respectively, modify Ca2+ and Pi efflux without penetrating the mitochondrial inner membrane. Under all the adopted conditions the membrane potential is preserved. The release of resting respiration and the parallel efflux of Mg2+ and adenine nucleotides, events closely correlated to Ca2+ cycling, are equally prevented either by mersalyl, which inhibits phosphate transport, or dithioerythritol; DDBA has the opposite effect. These findings and the observation that suggest that Ca2+ and phosphate transport in energized liver mitochondria are closely related and dependent on the redox state of membrane-bound thiol groups.  相似文献   

16.
The mechanism of activation of hepatic microsomal glucose-6-phosphatase (EC 3.1.3.9) in vitro by amiloride has been investigated in both intact and fully disrupted microsomes. The major effect of amiloride is a 4.5-fold reduction in the Km of glucose-6-phosphatase activity in intact diabetic rat liver microsomes. Amiloride also decreased the Km of glucose-6-phosphatase activity in intact liver microsomes isolated from starved rats 2.5-fold. Kinetic calculations, direct enzyme assays and direct transport assays all demonstrated that the site of amiloride action was T1, the hepatic microsomal glucose 6-phosphate transport protein. This is, to our knowledge, the first report of an activation of any of the proteins of the multimeric hepatic microsomal glucose-6-phosphatase complex.  相似文献   

17.
1. The administration of dexamethasone to intact fed rats by intraperitoneal injection for 3h was associated with a 6-fold increase in the time for which mitochondria subsequently isolated from the liver retain a given load of exogenous Ca2+. This effect was blocked by the co-administration of cycloheximide with dexamethasone, and partially blocked by the co-administration of puromycin. Daily administration of dexamethasone for periods of 4--7 days resulted in liver mitochondria that exhibited a decreased ability to retain exogenous Ca2+. 2. When glucagon was administered to fed adrenalectomized rats, the increase in mitochondrial Ca2+-retention time that results from the action of this hormone was reduced by 50% when compared with its effect on intact animals. The administration of dexamethasone to adrenalectomized rats partially restored the full effect of glucagon. 3. Dexamethasone did not enhance the effect of glucagon on mitochondrial Ca2+-retention time when administered to intact fed rats. 4. It is concluded that these data support the hypothesis that the hormone-induced modification of liver mitochondria, which results in an increase in the time for which exogenous Ca2+ is retained, involves a step in which new protein is synthesized.  相似文献   

18.
Molecular pathology of glucose-6-phosphatase   总被引:3,自引:0,他引:3  
A Burchell 《FASEB journal》1990,4(12):2978-2988
It was known in the 1950s that hepatic microsomal glucose-6-phosphatase plays an important role in the regulation of blood glucose levels. All attempts since then to purify a single polypeptide with glucose-6-phosphatase activity have failed. Until recently, virtually nothing was known about the molecular basis of glucose-6-phosphatase or its regulation. Recent studies of the type 1 glycogen storage diseases, which are human genetic deficiencies that result in impaired glucose-6-phosphatase activity, have greatly increased our understanding of glucose-6-phosphatase. Glucose-6-phosphatase has been shown to comprise at least five different polypeptides, the catalytic subunit of glucose-6-phosphatase with its active site situated in the lumen of the endoplasmic reticulum; a regulatory Ca2+ binding protein; and three transport proteins, T1, T2, and T3, which respectively allow glucose-6-phosphate, phosphate, and glucose to cross the endoplasmic reticulum membrane. Purified glucose-6-phosphatase proteins, immunospecific antibodies, and improved assay techniques have led to the diagnosis of a variety of new type 1 glycogen storage diseases. Recent studies of the type 1 glycogen storage diseases have led to a much greater understanding of the role and regulation of each of the glucose-6-phosphatase proteins.  相似文献   

19.
The subcellular distribution of NADase in splenic and peritoneal macrophages of the mouse has been studied. Conventional procedures for fractionation and isolation of subcellular components demonstrated that the NADase of murine macrophages was localized in the microsomal fraction. By using the diazonium salt of sulfanilic acid, a nonpenetrating reagent known to inactivate ecto-enzymes in intact cells, purified plasma membrane preparations, and marker enzymes, 5′-nucleotidase for plasma membrane and glucose 6-phosphatase for the microsomal fraction, we have shown that: (i) NADase of murine macrophages is a plasma membrane ecto-enzyme and (ii) the microsomal fraction is a mixture of endoplasmic reticulum and plasma membrane elements. At 5 × 10?4 M concentration, the diazonium salt of sulfanilic acid drastically decreased NADase in intact splenic and peritoneal macrophages of the mouse. 5′-Nucleotidase was similarly inhibited by this reagent, whereas the activity of glucose 6-phosphatase remained unaffected. There was a good recovery of NADase of high specific activity in plasma membrane preparations that were characterized by high 5′-nucleotidase and low glucose 6-phosphatase activity.  相似文献   

20.
We have studied the effect of Ruthenium red on the sarcoplasmic reticulum Ca(2+)-ATPase. Ruthenium red does not modify the Ca2+ pumping activity of the enzyme, despite its interaction with cationic binding sites on sarcoplasmic reticulum vesicles. Two pools of binding sites were distinguished. One pool (10 nmol/mg) is dependent upon the presence of micromolar Ca2+ and may therefore represent the high-affinity Ca2+ transport sites of the Ca(2+)-ATPase. However, Ruthenium red only slightly competes with Ca2+ on these sites. The other pool (15-17 nmol/mg) is characterized as low-affinity cation binding sites of sarcoplasmic reticulum, distinct from the Mg2+ site involved in the ATP binding to the Ca(2+)-ATPase. The interaction of Ruthenium red with these low-affinity cation binding sites, which may be located either on the Ca(2+)-ATPase or on surrounding lipids, decreases tryptophan fluorescence level of the protein. As much as 25% of the tryptophan fluorescence of the Ca(2+)-ATPase is quenched by Ruthenium red (with a dissociation constant of 100 nM), tryptophan residues located near the bilayer being preferentially affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号