首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The Na+ and K+ concentrations in isolated Torpedo marmorata synaptosomes were determined. Synaptosomes made according to the method of Israël et al. have high internal Na+ (290 MM) and low internal K+ (30 mM) concentrations. Modification of the homogenisation media permitted the isolation of synaptosomes which could maintain transmembrane ion gradients (internal Na+, 96 mM; K+, 81 mM); 0.1 mM-ouabain abolished these gradients. The trans-membrane Na+ gradient started to dissipate after 15 min at 20°C. Inclusion of ATP in the homogenisation medium enabled the synaptosomes to maintain the Na+ gradient for about 90 min. The presence of these transmembrane ion gradients stimulated choline uptake sevenfold. It is concluded that (a) by selecting the isolation media, Torpedo synaptosomes can be prepared with transmembrane ion gradients; (b) these gradients are ouabain-sensitive and stimulate choline uptake: (c) the synaptosomes require additional ATP to maintain the ion gradients.  相似文献   

2.
Abstract: A novel fluorescent Na+ indicator, Na+-binding benzofuran isophthalate (SBFI), was used to follow changes in the intracellular free Na+ concentration ([Na+]1) of synaptosomes. The dye, when loaded into synapto- somes in the form of its acetoxymethyl ester, was responsive to changes of [Na+]1. Calibration was made using the 340/380 nm excitation ratio when the cytoplasmic Na+ concentration was equilibrated with different concentrations of extracellular Na+ in the presence of 2 μ M gramicidin D. The basal value of [Na+]1 in synaptosomes in the presence of 140 m M extracellular Na+ was found to be 10.9 ± 1.8 m M. Veratridine, which opens potential-dependent Na+ channels, caused a sudden increase in [Na+]1 in a concentration-dependent manner (1 -20 μ M ), whereas the effect of ouabain (20 and 50 μ M ), the inhibitor of the plasma membrane Na+,K+-ATPase, was more gradual. The rise in the fluorescence intensity upon addition of veratridine was prevented completely by 2 μ M tetrodotoxin. α-Latrotoxin, the black widow spider toxin, caused an increase in the fluorescence intensity, which became evident 1 min after the addition of the toxin. The rate of increase was proportional to the concentration of the toxin (0.19–1.5 n M ). This report confirms our earlier finding demonstrating a Na+-dependent component in the action of α-Iatrotoxin, and shows that changes in [Na+]1 in synaptosomes can be followed by SBFI.  相似文献   

3.
Abstract: Bovine serum albumin (BSA) is shown to stimulate selectively the synaptosomal uptakes of those amino acids that are dependent on external Na+ and that are inhibited by veratridine. Thus, the stimulation can be seen in the case of aspartic acid, glutamic acid, glycine, proline, and γ-aminobutyric acid, but not with serine and threonine. Further, studies on the interaction of veratridine, valinomycin, and BSA on the uptake of proline suggest that the primary action of the albumin is to increase the influx of proline. Such an action could result as a consequence of stabilization of the Na+ gradient by increased endogenous levels of ATP. Intrasynaptosomal ATP was increased in the presence of BSA but significantly decreased by veratridine.  相似文献   

4.
Abstract: The release of preloaded [14C]neuroactive amino acids (glutamic acid, proline, γ-aminobutyric acid) from rat brain synaptosomes can occur via a time-dependent, Ca2+ -independent process. This Ca2+-independent efflux is increased by compounds that activate Na+ channels (veratridine, scorpion venoms), by the ionophore gramicidin D, and by low concentrations of unsaturated fatty acids (oleic acid and arachidonic acid). Saturated fatty acids have no effect on the efflux process. Neither saturated nor unsaturated fatty acids have an effect on the release of [14C]leucine, an amino acid not known to possess neurotransmitter properties. The increase in the efflux of neuroactive amino acids by oleic and arachidonic acids can also be demonstrated using synaptosomal membrane vesicles. Under conditions in which unsaturated free fatty acids enhance amino acid efflux, no effect on 22Na+ permeability is observed. Since Na+ permeability is not altered by fatty acids, the synaptosomes are not depolarized in their presence and, thus, the Na+ gradient can be assumed to be undisturbed. We conclude that unsaturated fatty acids represent a potentially important class of endogenous modulators of neuroactive amino acid transport in nerve endings and further postulate that their action is the result of an uncoupling of amino acid transport from the synaptosomal Na+ gradient.  相似文献   

5.
Abstract: Tryptophan uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on the Na+ gradient [Na+] outside > [Na+] inside and is maximal when both Na+ and Cl are present. The uptake represents transport into an os-motically active space and not a binding artifact, as indicated by the effect of increasing the medium osmo-larity. The uptake of tryptophan is stimulated by a membrane potential (interior negative) as demonstrated by the effects of the ionophores valinomycin and carbonyl cyanide m-chlorophenylhydrazone and anions with different permeabilities. Kinetic data show that tryptophan is accumulated by two systems with different affinities. Ouabain, an inhibitor of Na+, K+-activated ATPase, does not affect tryptophan transport. The uptake of tryptophan is inhibited by high concentrations of phenylalanine, tyrosine, leucine and 3, 4-dihydroxyphenylalanine.  相似文献   

6.
Abstract: The acute effects of serum on sodium-potassium (Na+-K+) pump activity and glucose uptake in cultured rat skeletal muscle were studied. Addition of serum to myo-tubes in phosphate-buffered saline caused Na+-K+ pump activity (as measured by changes in the ouabain-sensitive component of both membrane potential and 86Rb uptake) to increase, with peak effects obtained after 30 min. The effect was blocked completely by treatment with amiloride, but not by tetrodotoxin, which blocks voltage-dependent Na+ channels. On transfer of myotubes to Na+-free, choline buffer, resting Na+-K+ pump activity decreased to about 10% of that in phosphate-buffered saline. Addition of regular serum, but not Na+-free serum, caused Na+-K+ pump activity to increase slightly. Similar results were obtained with serum on glucose uptake, the peak effect being reached within 15 min. Stimulation of glucose uptake by serum was partially reduced by amiloride and was not altered by tetrodotoxin. Removal of external Na+ also eliminated serum effects on glucose uptake. The results demonstrate that there are similar signals involving Na+-H+ exchange for serum-induced increases in Na+-K+ pump activity and glucose transport. The lack of complete blockade of serum-induced elevation of glucose transport suggests an additional, as yet undefined, intracellular signal for stimulation of this transport system.  相似文献   

7.
Abstract: Nations were found to inhibit the uptake of L-tryptophan into synaptosomes with a shallow dose-response curve. Almost maximal inhibition was obtained with 10 mM-Na+. The divalent cations Ca2+ and Mg2+ were shown to be responsible for the increased uptake of L-tryptophan in the absence of Na+ ions. Other divalent cations also promoted tryptophan uptake under this condition (Ca2+ < Mg2+ < Mn2+ < Fe2+ < Zn2+ < Cu2+). It was concluded that monovalent chelate complexes were responsible for this enhancing effect. The measured L-tryptophan uptake was the net product of membrane bound and unbound tryptophan. Both bound and unbound tryptophan were increased in the presence of divalent cations. If no divalent cations were added to the incubation medium, Na+ ions decreased the unbound tryptophan but were without effect on bound tryptophan. Under these circumstances D-tryptophan had no effect on binding of the L-isomer and affected the transport of 1.-tryptophan only at very high does (100 x conc. L-tryptophan). These results suggest that I -tryptophan binds to a stereospecific transport carrier located in the synaptosomal membrane and that Na+ ions prevent the translocation of this carrier amino acid complex from the outer to the inner site of the neuronal membrane.  相似文献   

8.
Abstract: The voltage-dependent Na+ ionophore of various neuronal cells is permeable not only to Na+ ions but also to guanidinium ions. Therefore, the veratridine-(or aconitine-) stimulated influx of [14C]guanidinium in neuroblastoma × glioma hybrid cells was measured to characterize the Na+ ionophore of these cells. Half-maximal stimulation of guanidinium uptake was seen at 30 μ M veratridine. At 1 m M guanidinium, the veratridine-stimulated uptake of guanidinium was lowered to 50% by approximately 60 m M Li+, Na+, or K+ and by a few millimolar Mn2+, Co2+, or Ni2+. The basal, as well as the veratridine-stimulated, uptake of guanidinium was inhibited by the cholinergic antagonists (+)-tubocurarine ( Ki = 50 to 500 n M ) and atropine ( Ki = 5 to 30 μ M ) and the adrenergic antagonists phentolamine ( Ki = 5 μ M ) and propranolol ( Ki = 60 μ M ). The specificity of the inhibitory effects of these agents is stressed by the ineffectiveness of various other neurotransmitter antagonists. However, the corresponding ionophore in neuroblastoma cells (clone N1E-115) seems to be regulated differently. While phentolamine and propranolol inhibit the veratridine-activated uptake as in the hybrid cells, (+)-tubocurarine and atropine exert only a slight effect.  相似文献   

9.
Abstract: Agmatine (decarboxylated arginine), an endogenous ligand for imidazoline receptors, has been identified in brain where it is synthesized from arginine by arginine decarboxylase. Here we report a mechanism for the transport of agmatine into rat brain synaptosomes. The uptake of agmatine was energy- and temperature-dependent and saturable with a K m of 18.83 ± 3.31 m M and a V max of 4.78 ± 0.67 nmol/mg of protein/min. Treatment with ouabain (Na+,K+-ATPase inhibitor) or removal of extracellular Na+ did not attenuate the uptake rate. Agmatine transport was not inhibited by amino acids, polyamines, or monoamines, indicating that the uptake is not mediated by any amino acid, polyamine, or monoamine carriers. When we examined the effects of some ion-channel agents on agmatine uptake, only Ca2+-channel blockers inhibited the uptake, whereas a reduction in extracellular Ca2+ increased it. In addition, some imidazoline drugs, such as idazoxan and phentolamine, were strong noncompetitive inhibitors of agmatine uptake. Thus, a selective, Na+-independent uptake system for agmatine exists in brain and may be important in regulating the extracellular concentration of agmatine.  相似文献   

10.
Abstract: The effects of nitric oxide (NO)-generating agents on 45Ca2+ uptake in rat brain slices and cultured rat astrocytes were studied in the presence of monensin, which is considered to drive the Na+-Ca2+ exchanger in the reverse mode. Sodium nitroprusside (SNP) at >10 µ M increased monensin-stimulated Ca2+ uptake in the slices, although it did not affect high K+-stimulated Ca2+ uptake. Another NO donor, 3-morpholinosydnonimine, was effective. The effect of SNP was antagonized by hemoglobin (50 µ M ), a NO scavenger, and mimicked by 8-bromo-cyclic GMP (100 µ M ). In rat brain synaptosomes, SNP increased monensin-stimulated Ca2+ uptake, but it did not affect high K+-stimulated Ca2+ uptake. 8-Bromocyclic GMP, but not SNP, increased Na+-dependent Ca2+ uptake significantly in synaptic membrane vesicles in the absence of monensin. In cultured rat astrocytes, SNP and 8-bromo-cyclic GMP increased Ca2+ uptake in the presence of ouabain and monensin, which were required for the Ca2+ uptake in the cells. These findings suggest that NO stimulates the Na+-Ca2+ exchanger in neuronal preparations and astrocytes in a cyclic GMP-dependent mechanism.  相似文献   

11.
Abstract: The effects of alcohol and Ca2+ transport inhibitors on depolarization-induced stimulation of oxidative phosphorylation and free-Ca2+ concentrations in rat synaptosomes were investigated. Glucose oxidation was stimulated by depolarization with K+ or veratridine and by the Ca2+ ionophore ionomycin. The stimulation by K+, veratridine, and ionomycin was correlated with elevation of synaptosomal free Ca2+. Depolarization-stimulated respiration was inhibited by verapamil, Cd2+, and ruthenium red but not by diltiazem. Synaptosomal Ca2+ elevation was inhibited by verapamil but not by ruthenium red. These results indicate that the stimulation depends on elevation of mitochondrial free Ca2+. Ethanol, at pharmacological concentrations (50–200 m M ), inhibited the Ca2+-dependent stimulation of oxidative phosphorylation. This inhibition resulted, in part, from the inhibition of voltage-gated Ca2+ channels, which inhibited the elevation of synaptosomal free Ca2+, and, in part, from the stimulation of the mitochondrial Ca2+/Na+ antiporter, which inhibited the elevation of the mitochondrial matrix free Ca2+. The inhibition by ethanol of the excitation-induced stimulation of oxidative phosphorylation in the synapse may contribute to the depressant and narcotic effects of alcohol and enhance excitotoxicity.  相似文献   

12.
Abstract: Recent studies have demonstrated that D1-selective and D2-selective dopamine receptor agonists inhibit catecholamine secretion and Ca2+ uptake into bovine adrenal chromaffin cells by receptor subtypes that we have identified by PCR as D5, a member of the D1-like dopamine receptor subfamily, and D4, a member of the D2-like dopamine receptor subfamily. The purpose of this study was to determine whether activation of D5 or D4 receptors inhibits influx of Na+, which could explain inhibition of secretion and Ca2+ uptake by dopamine agonists. D1-selective agonists preferentially inhibited both dimethylphenylpiperazinium- (DMPP) and veratridine-stimulated 22Na+ influx into chromaffin cells. The D1-selective agonists chloro-APB hydrobromide (CI-APB; 100 µ M ) and SKF-38393 (100 µ M ) inhibited DMPP-stimulated Na+ uptake by 87.5 ± 2.3 and 59.7 ± 4.5%, respectively, whereas the D2-selective agonist bromocriptine (100 µ M ) inhibited Na+ uptake by only 22.9 ± 5.0%. Veratridine-stimulated Na+ uptake was inhibited 95.1 ± 3.2 and 25.7 ± 4.7% by 100 µ M CI-APB or bromocriptine, respectively. The effect of CI-APB was concentration dependent. A similar IC50 (∼18 µ M ) for inhibition of both DMPP- and veratridine-stimulated Na+ uptake was obtained. The addition of 8-bromo-cyclic AMP (1 m M ) had no effect on either DMPP- or veratridine-stimulated Na+ uptake. These observations suggest that D1-selective agonists are inhibiting secretagogue-stimulated Na+ uptake in a cyclic AMP-independent manner.  相似文献   

13.
Abstract: The effects of substrates m -tyramine and β-phenethylamine, as well as cocaine, on the DA efflux from a cell line stably expressing the human norepinephrine transporter (hNET) were investigated by using rotating disk electrode voltammetry. Both the substrates and cocaine induced apparent DA efflux in a concentration-dependent manner. Their EC50 values for inducing DA efflux were similar to their IC50 values for inhibiting DA uptake. The substrate-induced DA efflux was inhibited by various NET blockers, enhanced by raising the internal [Na+] with Na+,K+-ATPase inhibition, but was insensitive to membrane potential-altering agents valinomycin, veratridine, and high [K+]. The initial rate of m -tyramine-induced DA efflux was related to preloaded [DA] in a manner defined by a Michaelis-Menten expression. In contrast, DA efflux in the presence of cocaine displayed a much slower efflux rate, lower efficacy, was not stimulated by elevated internal [Na+], and was nonsaturable with preloaded [DA]. Single exponential kinetic analysis of the entire time course of the DA efflux showed that the apparent first-order rate constant for m -tyramine-induced DA efflux declined with increased preloaded [DA], whereas that for the DA efflux in the presence of cocaine was unchanged with varying preloaded [DA]. These results suggest that the substrates stimulate the NET-dependent DA efflux by increasing the accessibility of the NET to internal DA, whereas cocaine "uncovers" NET-independent DA efflux by reducing the accessibility of diffused/leaked external DA to the NET.  相似文献   

14.
15.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

16.
In this paper we begin our study of factors controlling Na+ and K+ uptake in the halophyte Spergularia marina (L.) Griseb., with emphasis on plants growing at moderate salinity (0.2x sea water). The involvement of transpiration was considered first because of its potential to account for much or all of the transport of ions, and particularly of Na+, to the shoot under these growth conditions. Transpiration was constant with time through most of the light period, quickly dropping to 6% of the day time rate at night. 22Na+ uptake, on the other hand, showed much less day/night variation, and relative transport to the shoot was constant. After establishing that transpiration was linearly related to leaf weight, possible transpiration effects were further considered as correlations between leaf weight and transport to the shoot. Under constant, day-time conditions, with linear effects of time and plant size removed, total transport of 22Na+ to the shoot (per plant) was not correlated to leaf weight. A similar result was found when transport was expressed per gram of root, and when partitioning of total label to the shoot was considered. Finally, the correlation was considered between leaf weight and a Na+/K+ enrichment factor defined as the Na+/K+ ratio in the leaves divided by that in the roots. This correlation was also insignificant. The results indicate that analysis of control of Na+ and K+ uptake and transport in this experimental system need not consider effects of transpiration.  相似文献   

17.
Abstract: The role of Na+ channels and membrane potential in stimulus secretion coupling in adrenal medulla cell cultures was investigated. Veratridine, aconitine, batrachotoxin (BTX), and scorpion venom, which increase the flux of ions through tetrodotoxin(TTX)-sensitive Na+ channels, all evoke secretion of catecholamines that is blocked by TTX. TTX partially inhibits secretion induced by low concentrations of nicotine in Locke's solution but has no effect on high concentrations of nicotine (20 μM). In Ca2+-sucrose media TTX has no effect on secretion at either high or low concentrations of nicotine. Replacement of Na+ with Li+ in Locke's solution reduces the response to nicotine and to veratridine. Complete replacement of Na+ with hydrazine, diethanolamine, TRIS, and choline completely inhibits the response to nicotine and almost completely inhibits the response to veratridine. Following exposure of cells to 50 mM-100 mM-K+, nicotine does not stimulate catecholamine secretion unless the cells are resuspended in media containing less than 50 mM-K+. Neither dibutyryl-cyclic AMP nor dibutyryl-cyclic GMP evokes secretion. α-Bungarotoxin (1 μM) did not inhibit nicotine-induced secretion. These studies indicate that Na+ channels and acetylcholine (ACh) receptor ion channels are independently coupled to the influx of Ca2+. The membrane potential appears to affect nicotine- and veratridine-evoked secretion.  相似文献   

18.
Abstract: A continuous enzyme-linked fluorometric assay was used for determining the characteristics for glutamate exocytosis from guinea-pig cerebrocortical synaptosomes. Ca2+-dependent release can be induced not only by K+, but also by the Na+ channel activator veratridine and the Ca2+ ionophore ionomycin. K+-induced release can be inhibited by the Ca2+ channel inhibitor verapamil. Sr2+ and Ba2+ substitute for Ca2+ in promoting K+-induced release. Agents that would be predicted to transform the transvesicular pH gradient into a membrane potential are without effect on glutamate release. However, the protonophore carbonylcy-anide p -trifluoromethoxyphenylhydrazone causes a time-dependent loss of exocytosis that is oligomycin insensitive and may be due to depletion of vesicular glutamate. The Ca2+-independent release of glutamate from the cytosol on depolarization is unchanged or promoted by metabolic inhibitors that lower the ATP/ADP ratio. In contrast, Ca2+-dependent release is ATP dependent and is blocked by the combined inhibition of oxidative phosphorylation and glycolysis.  相似文献   

19.
Abstract: The effects of several neurotoxins and cholinergic antagonists on the nicotine-induced secretion of catecholamines by adrenal medulla cells in culture were investigated. Aconitine, veratridine, and batrachotoxin, in the presence of 1 μ m -tetrodotoxin inhibited the nicotine-stimulated secretion of catecholamines in a dose-dependent manner in Locke's solution. In Na+-free sucrose medium, tetrodotoxin was not required to inhibit the stimulatory effects of aconitine, veratridine, and batrachotoxin, and these agents by themselves inhibited the nicotine-stimulated secretion of catecholamines. Scorpion venom, which also increases the flux of Na+ through tetrodotoxin-sensitive channels, was not an effective inhibitor of nicotine-stimulated secretion. Histrionicotoxin, atropine, hexamethonium, and decamethoniun–as well as the Na+-channel activators–noncompetitively inhibit nicotine-stimulated secretion. The effects of these agents on nicotine-stimulated secretion appear similar to their effects on the inhibition of depolarization at the neuromuscular junction. Reversibility studies suggest that the stimulatory and inhibitory sites of the neurotoxins are different, while studies in Na+-free media suggest that tetrodotoxin-insensitive sodium channels are not involved in the inhibitory effect of the neurotoxins. A possible site of action for the inhibitory effects of the neurotoxins. A possible site of action for the inhibitory effects of the neurotoxins is the nicotinic-receptor-associated ion channel.  相似文献   

20.
A yeast strain carrying disruptions in TRK1 and ENA genes was very sensitive to Na+ because uptake discriminated poorly between K+ and Na+, and Na+ efflux was insignificant. Transformation with TRK1 and ENA1 restored discrimination, Na+ efflux and Na+ tolerance. Increasing external Ca2+ increased Na+ tolerance almost in the same proportion in TRK1 enal cells and in trkl ENAI cells, suggesting an unspecific effect of this cation. By using a vacuolar ATPase mutant, the role of the vacuole in Na+ tolerance was also demonstrated. The yeast model of Na+ exclusion and Na+ tolerance may be extended to plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号