首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肿瘤浸润转移分子机制的研究进展   总被引:5,自引:0,他引:5  
肿瘤浸润转移是多因素参与、多步骤完成的生物化学变化过程。人们已经逐渐认识到浸润转移不仅与肿瘤细胞有关,更是肿瘤细胞和肿瘤组织微环境复杂的相互作用的结果,其过程涉及多个分子作用机制和信号转导途径,包括细胞和细胞的黏附分子、细胞外基质降解、生长因子、趋化因子和淋巴血管生成因子等。本文综述了肿瘤浸润转移的分子机制。  相似文献   

2.
P rokaryotic u biquitin‐like p rotein (Pup) is the first identified prokaryotic protein that is functionally analogous to ubiquitin. Despite using the proteasome as the end‐point for proteolysis, Pup differs from ubiquitin both biochemically and structurally. We will discuss these differences that have been highlighted by several recent studies. Finally, we will speculate on the possible interactions between the two analogous pathways in pathogen and host.  相似文献   

3.
Our laboratory has had a longstanding interest in how the interactions between tumors and their microenvironment affect malignant progression. Recently, we have focused on defining the proteolytic pathways that function in the transition of breast cancer from the pre-invasive lesions of ductal carcinoma in situ (DCIS) to invasive ductal carcinomas (IDCs). We use live-cell imaging to visualize, localize and quantify proteolysis as it occurs in real-time and thereby have established roles for lysosomal cysteine proteases both pericellularly and intracellularly in tumor proteolysis. To facilitate these studies, we have developed and optimized 3D organotypic co-culture models that recapitulate the in vivo interactions of mammary epithelial cells or tumor cells with stromal and inflammatory cells. Here we will discuss the background that led to our present studies as well as the techniques and models that we employ. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

4.
5.
6.
Ubiquitin-dependent proteolysis of cellular proteins is one of the major pathways to regulate protein function posttranslationally. Here we demonstrate a potentially general method of degrading any targeted proteins by the ubiquitin-dependent proteolysis in living cells, using small-molecule proteolysis inducer (SMPI).  相似文献   

7.
Cyclin-dependent kinases (CDKs) are regulated by cyclin proteolysis and CDK inhibitors (CKIs) during mitotic exit and G1 phase in yeast and Drosophila, and disruption of both regulatory pathways leads to genomic instability. Our study using mouse cell lines that constitutively express a stabilized mutant of cyclin A revealed that three CKIs, p21, p27, and Rb-related p107, are responsible for cyclin proteolysis-independent inactivation of CDK during mitotic exit and G1. Enforced expression of cyclin A in the cells lacking all three CKIs induced rapid tetraploidization. Thus, the redundant pathways consisting of cyclin proteolysis and CKIs control CDK activity during mitotic exit and contribute to maintenance of genome stability in mammalian cells.  相似文献   

8.
9.
Proteolysis within the cardiac sarcomere is a constantly evolving area of research. Three major pathways of proteolysis have been identified as being active within the cardiac sarcomere, namely the ubiquitin-proteasome system, autophagy, and the calpain system. The role of ubiquitin-proteasome system-mediated proteolysis in cardiovascular health and disease has been known for some time; however, it is now apparent that other proteolytic systems also aid in the stabilization of cardiac sarcomere structure and function. This minireview focuses on the individual as well as cooperative involvement of each of these three major pathways of proteolysis within the cardiac sarcomere.  相似文献   

10.
Human replication protein A (RPA), composed of RPA70, RPA32, and RPA14 subunits, undergoes hyperphosphorylation in cells in response to DNA damage. Hyperphosphorylation that occurs predominately in the N-terminal region of RPA32 is believed to play a role in modulating the cellular activities of RPA essential for almost all DNA metabolic pathways. To understand how the hyperphosphorylation modulates the functions of RPA, we compared the structural characteristics of full-length native and hyperphosphorylated RPAs using mass spectrometric protein footprinting, fluorescence spectroscopy, and limited proteolysis. Our mass spectrometric data showed that of 24 lysines and 18 arginines readily susceptible to small chemical reagent modification in native RPA, the three residues Lys-343, Arg-335, and Arg-382, located in DNA binding domain B (DBD-B) of RPA70, were significantly shielded in the hyperphosphorylated protein. Tryptophan fluorescence studies indicated significant quenching of Trp-361, located in the DBD-B domain, induced by hyperphosphorylation of RPA. Consistently, DBD-B became more resistant to the limited proteolysis by chymotrypsin after RPA hyperphosphorylation. Taken together, our results indicate that upon hyperphosphorylation of RPA32 N terminus (RPA32N), RPA undergoes a conformational change involving the single-stranded DNA binding cleft of DBD-B. Comparison of the interactions of native and hyperphosphorylated RPAs with short single-stranded oligonucleotides or partial DNA duplexes with a short 5' or 3' single-stranded DNA tails showed reduced affinity for the latter protein. We propose that the hyperphosphorylation may play a role in modulating the cellular pathways by altering the DBD-B-mediated RPA-DNA and RPA-protein interactions, hypothetically via the interaction of hyperphosphorylated RPA32N with DBD-B.  相似文献   

11.
Molecular determinants of protein half-lives in eukaryotic cells   总被引:16,自引:0,他引:16  
J F Dice 《FASEB journal》1987,1(5):349-357
Multiple pathways of intracellular protein breakdown operate within cells, and the activities of different pathways can be regulated under different physiological conditions. Recent studies suggest that molecular determinants within proteins target them for different pathways of proteolysis. Proteins that are partially unfolded and have an unblocked amino-terminal amino acid with a bulky side chain appear to be good substrates for cytosolic, ubiquitin-mediated pathways of proteolysis. Certain modifications of internal residues such as oxidation of methionines also increase the susceptibility of certain proteins to ubiquitin-mediated proteolysis. Rapidly degraded normal proteins contain peptide regions rich in proline, glutamate, serine, and threonine (PEST regions). The pathway of degradation for these proteins has not been established, but they may be good substrates for calcium-activated proteases. In addition, a lysosomal pathway of protein degradation is activated when serum is withdrawn from cultured cells and is selective for cytosolic proteins containing peptide regions similar to Lys-Phe-Glu-Arg-Gln (KFERQ). This short review summarizes our current understanding of mechanisms of protein breakdown in eukaryotes and evaluates potential molecular determinants of protein half-lives.  相似文献   

12.
The affinity of many types of membrane-bound receptors coupled negatively to adenylate cyclase is regulated by divalent and monovalent cations and by guanine nucleotides (GTP). We used alpha 2-adrenoreceptors of human platelets as a model system to find out the effect of limited proteolysis with trypsin on the regulation of the alpha 2-adrenoreceptor-agonist interactions by GTP and Na+. We found that partial proteolysis of the membranes with trypsin for 3 min at 35 degrees C reduced specific [3H]yohimbine binding to platelet membranes to 40-50% of control. The following characteristics of the receptors remaining after proteolysis were similar to those of untreated membranes: affinity for the agonist and antagonists, stereospecificity, and kinetic properties. Trypsin also did not modify the ability of the receptor's change from a high to low affinity state in the presence of Na+. These findings suggested that the capability of the receptors to recognize the ligand and their ability to undergo a conformational change in the presence of the agonist were retained despite a reduction in the total number of receptors by trypsin. However, the modulation of the receptor--agonist interactions by GTP or Mg2+ was lost in the trypsin-pretreated membranes, while the modulation by Na+ remained intact. It is suggested that the loss of GTP or Mg2+ effects on receptor--ligand interactions produced by trypsin may be due to trypsin-induced disruption of subunits (alpha i, beta gamma) interactions of Gi protein.  相似文献   

13.
Recent studies of the neurophysins and associated neuropeptide hormones have addressed both the biosynthetic pathways by which these noncovalent protein–peptide complexes are derived in neurosecretory neurons and the nature of the noncovalent interactions likely to occur during transport and storage in neurosecretory granules within the neurons. In vitro translation of hypothalamic mRNA and sequencing of cDNA obtained from this mRNA have yielded chemical evidence that each complex of hormone and major neurophysin is made through a common precursor molecule. The mature complexes obtained upon proteolytic processing of precursors exhibit interdependent hormone binding and self-association interactions. Photoaffinity labeling and quantitative affinity chromatography have helped detect and define the binding surfaces involved. Further study of the structural nature of these surfaces is being carried out using large neurophysin fragments obtained by limited tryptic proteolysis.  相似文献   

14.
In budding yeast, anaphase initiation is controlled by ubiquitin-dependent degradation of Pds1p. Analysis of pds1 mutants implicated Pds1p in the DNA damage, spindle assembly, and S-phase checkpoints. Though some components of these pathways are known, others remain to be identified. Moreover, the essential function of Pds1p, independent of its role in checkpoint control, has not been elucidated. To identify loci that genetically interact with PDS1, we screened for dosage suppressors of a temperature-sensitive pds1 allele, pds1-128, defective for checkpoint control at the permissive temperature and essential for viability at 37 degrees C. Genetic and functional interactions of two suppressors are described. RAD23 and DDI1 suppress the temperature and hydroxyurea, but not radiation or nocodazole, sensitivity of pds1-128. rad23 and ddi1 mutants are partially defective in S-phase checkpoint control but are proficient in DNA damage and spindle assembly checkpoints. Therefore, Rad23p and Ddi1p participate in a subset of Pds1p-dependent cell cycle controls. Both Rad23p and Ddi1p contain ubiquitin-associated (UBA) domains which are required for dosage suppression of pds1-128. UBA domains are found in several proteins involved in ubiquitin-dependent proteolysis, though no function has been assigned to them. Deletion of the UBA domains of Rad23p and Ddi1p renders cells defective in S-phase checkpoint control, implicating UBA domains in checkpoint signaling. Since Pds1p destruction, and thus checkpoint regulation of mitosis, depends on ubiquitin-dependent proteolysis, we propose that the UBA domains functionally interact with the ubiquitin system to control Pds1p degradation in response to checkpoint activation.  相似文献   

15.
Protein quality control pathways require AAA+ proteases, such as Clp and Lon. Lon protease maintains UmuD, an important component of the error-prone DNA repair polymerase (Pol V), at very low levels in E. coli. Most members of the phylum Cyanobacteria lack Lon (including the model cyanobacterium, Synechocystis sp. PCC6803), so maintenance of UmuD at low levels must employ different proteases. We demonstrate that the first 19 residues from the N-terminus of UmuD (Sug1-19) fused to a reporter protein are adequate to trigger complete proteolysis and that mutation of a single leucine residue (L6) to aspartic acid inhibits proteolysis. This process appears to follow the N-end rule and is mediated by ClpA/P protease and the ClpS adaptor. Additionally, mutations of arginine residues in the Sug1-19 tag suggest that the ClpX/P pathway also plays a role in proteolysis. We propose that there is a dual degron at the N-terminus of the UmuD protein in Synechocystis sp. PCC6803, which is distinct from the degron required for degradation of UmuD in E. coli. The use of two proteolysis pathways to tune levels of UmuD might reflect how a photosynthetic organism responds to multiple environmental stressors.  相似文献   

16.
Skeletal muscle inactivity is associated with a loss of muscle protein and reduced force-generating capacity. This disuse-induced muscle atrophy results from both increased proteolysis and decreased protein synthesis. Investigations of the cell signaling pathways that regulate disuse muscle atrophy have increased our understanding of this complex process. Emerging evidence implicates oxidative stress as a key regulator of cell signaling pathways, leading to increased proteolysis and muscle atrophy during periods of prolonged disuse. This review will discuss the role of reactive oxygen species in the regulation of inactivity-induced skeletal muscle atrophy. The specific objectives of this article are to provide an overview of muscle proteases, outline intracellular sources of reactive oxygen species, and summarize the evidence that connects oxidative stress to signaling pathways contributing to disuse muscle atrophy. Moreover, this review will also discuss the specific role that oxidative stress plays in signaling pathways responsible for muscle proteolysis and myonuclear apoptosis and highlight gaps in our knowledge of disuse muscle atrophy. By presenting unresolved issues and suggesting topics for future research, it is hoped that this review will serve as a stimulus for the expansion of knowledge in this exciting field.  相似文献   

17.
A number of critical regulatory proteins in both prokaryotic and eukaryotic cells are subject to rapid, energy-dependent proteolysis. Rapid degradation combined with control over biosynthesis provides a mechanism by which the availability of a protein can be limited both temporally and spatially. Highly unstable regulatory proteins are involved in numerous biological functions, particularly at the commitment steps in developmental pathways and in emergency responses. The proteases involved in energy-dependent proteolysis are large proteins with the ability to use ATP to scan for appropriate targets and degrade complete proteins in a processive manner. These cytoplasmic proteases are also able to degrade many abnormal proteins in the cell.  相似文献   

18.
Although enhanced calpain activity is well documented after traumatic brain injury (TBI), the pathways targeting specific substrate proteolysis are less defined. Our past work demonstrated that calpain cleaves voltage gated sodium channel (NaCh) α-subunits in an in vitro TBI model. In this study, we investigated the pathways leading to NaCh cleavage utilizing our previously characterized in vitro TBI model, and determined the location of calpain activation within neuronal regions following stretch injury to micropatterned cultures. Calpain specific breakdown products of α-spectrin appeared within axonal, dendritic, and somatic regions 6 h after injury, concurrent with the appearance of NaCh α-subunit proteolysis in both whole cell or enriched axonal preparations. Direct pharmacological activation of either NMDA receptors (NMDArs) or NaChs resulted in NaCh proteolysis. Likewise, a chronic (6 h) dual inhibition of NMDArs/NaChs but not L-type voltage gated calcium channels significantly reduced NaCh proteolysis 6 h after mechanical injury. Interestingly, an early, transient (30 min) inhibition of NMDArs alone significantly reduced NaCh proteolysis. Although a chronic inhibition of calpain significantly reduced proteolysis, a transient inhibition of calpain immediately after injury failed to significantly attenuate NaCh proteolysis. These data suggest that both NMDArs and NaChs are key contributors to calpain activation after mechanical injury, and that a larger temporal window of sustained calpain activation needs consideration in developing effective treatments for TBI.  相似文献   

19.
Mucositis, a common toxic side effect of chemotherapy, is characterized by an arrest of cell proliferation and a loss of gut barrier function, which may cause treatment reduction or withdrawal. Gut integrity depends on nutritional and metabolic factors, including the balance between protein synthesis and proteolysis. The effects of methotrexate (MTX; a frequently used chemotherapeutic agent) on intestinal proteolysis and gut barrier function were investigated in rats. Male Sprague-Dawley rats received 2.5 mg/kg of MTX subcutaneously during 3 days and were euthanized at Day 4 (D4) or Day 7 (D7). We observed at D4 that MTX induced mucosal damage and increased intestinal permeability (7-fold) and the mucosal concentration of interleukin (IL)-1beta and IL-6 (4- to 6-fold). In addition, villus height and glutathione content significantly decreased. Intestinal proteolysis was also affected by MTX as cathepsin D activity increased at D4, whereas chymotrypsin-like proteasome activity decreased and calpain activities remained unaffected. At D7, cathepsin D activity was restored to control levels, but proteasome activity remained reduced. This disruption of proteolysis pathways strongly contributed to mucositis and requires further study. Lysosomal proteolytic activity may be considered the main proteolytic pathway responsible for alteration of mucosal integrity and intestinal permeability during mucositis, as cathepsin D activity was found to be correlated with mucosal atrophy and intestinal permeability. Proteasome regulation could possibly be an adaptive process for survival. Future investigation is warranted to target proteolytic pathways with protective nutritional or pharmacological therapies during mucositis.  相似文献   

20.
Illuminating topics in plant photobiology   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号