首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 181 毫秒
1.
synaptobrevin(简称SB蛋白)属于突触小泡胰蛋白家族(VAMPs),分子量为18—20KD,用枪乌贼进行实验,向神经末梢注射破伤风毒素TeTox和肉毒杆菌毒素BoTox,可裂解SB蛋白并不可逆地抑制神经递质的释 放,但不影响触发递质释放的突触前Ca~(2 )浓度。电镜观察表明,注射TeTox的神经末梢,停靠(docking)和末停靠的突触小泡数目均增加。进一步研究证实SB蛋白的裂解引起递质释放量减少,但不影响小泡停靠。提示SB蛋白可能在突触小泡停靠与融合之间某一环节介导神经递质的释放。  相似文献   

2.
突触前代谢型谷氨酸受体调节神经递质的释放   总被引:6,自引:0,他引:6  
谷氨酸通过激活离子型受体(iGluR)介导快速兴奋性突触传递,参与脑内几乎所有生理过程。谷氨酸过量释放可导致与脑缺血,缺氧及变性疾病有关的兴奋毒作用,最终引起神经元的死亡。代谢型谷氨酸受体(mGluRs)是一个与G-蛋白偶联的受体家族,分三型共八个亚型。其中Ⅱ和Ⅲ型mGluRs主要位于突触前,发挥对谷氨酸释放的负反馈调节。Ⅲ型mGluRs中的mGluR7位于谷氨酸能末梢突触前膜的活性区,发挥自身受体的作用,对正常情况下突触传递过程的谷氨酸释放进行负反馈调节;而属于Ⅱ型的mGluR2及属于Ⅲ型的mGluR4和mGluR8,则位于远离突有膜活性区的外突触区,因而正常突触传递过程中释放的谷氨酸量不能激活它们。只有在突触传递增强的情况下才被激活,抑制递质的释放。国外,mGluRs还分布在GABA能纤维末梢,通过突触前机制抑制GABA的释放。对突触前膜受体尤其是位于外突触区的mGluRs受体的研究,将有可能开发出理想的工具药,从而预防和阻止谷氨酸过量释放引起的神经毒及神经元的死亡。  相似文献   

3.
近年来,对突触小泡释放神经递质分子机制的研究迅速发展,发现了大量位于神经末梢的蛋白质.它们之间的相互作用与突触小泡释放神经递质相关,特别是位于突触小泡膜上的突触小泡蛋白/突触小泡相关膜蛋白(synaptobrevin/VAMP),位于突触前膜上的syntaxin和突触小体相关蛋白(synaptosome-associated protein of 25 ku),三者聚合形成的可溶性NSF附着蛋白受体(SNARE)核心复合体在突触小泡的胞裂外排、释放递质过程中有重要作用.而一些已知及未知的与SNARE蛋白有相互作用的蛋白质,可通过调节SNARE核心复合体的形成与解离来影响突触小泡的胞裂外排,从而可以调节突触信号传递的效率及强度,在突触可塑性的形成中起重要作用.  相似文献   

4.
钙离子(Ca2+)是调节突触前神经递质的胞吐释放的关键离子信号.作为胞内最普遍存在的钙离子感受器的钙调蛋白(CaM)被发现能通过与多种蛋白的相互作用,调控着突触小泡的生发、运输及再填充,从而传递胞内Ca2+浓度变化的信号,对神经递质的释放及突触电生理活动起到至关重要的调控作用.本文综述了CaM及其结合蛋白是如何参与对突触小泡的胞吐释放和胞吞恢复的调控,并探讨了其中可能的分子机制.  相似文献   

5.
突触小泡(SynapticVesicle)在神经递质释放过程中起关键性作用。采用膜片钳技术对突触前后细胞同步钳位研究了爪蟾胚胎神经元突触递质释放的过程,提出了如下小泡释放的假说:锚定在突触前膜的小泡中包含两类小泡:锚定态小泡和即发态小泡(即发态小泡定义为钙离子依赖性即时释放的小泡)。后者在动作电位到达时立即释放,而处于锚定态的小泡只有转换为钙离子依赖性释放的即发态时才能进入递质释放程序  相似文献   

6.
胞吐作用(excocytosis)是与胞吞作用(endo-Cytosis)方向相反的细胞活动过程,前者是细胞将某种要释放或分泌的物质排到细胞外面,后者是物质进入细胞的过程。胞吐作用是真核细胞一种极复杂的机能活动,是某些物质从细胞中释放或分泌的共同途径。例如:胰腺消化酶原的分泌,胰岛素从β-细胞的分泌、多肽激素从垂体细胞的分泌以及神经递质从神经末梢的释  相似文献   

7.
Synaptotagmin在神经递质释放过程中的作用   总被引:4,自引:0,他引:4  
神经突触间递质的释放是神经系统完成其生理功能最重要的生物现象之一。在贮存递质的突触囊泡上存在一些神经细胞所特有的囊泡蛋白,如突触素(synapsin)、synaptobrevin和synaptotagmin等。其中synaptotagmins是膜转运蛋白中的一个家族,它们的特征是含有两个钙结合区:C2A和C2B。到目前为止,在哺乳动物中已经发现了15种synaptotagmin同形物(isoforms)。神经递质释放是由Ca^2+内流以诱导突触囊泡发生胞吐而引起的,Ca^2+需与细胞内部的Ca^2+感受器相结合来协同控制囊泡胞吐释放,SynaptotagminⅠ可能作为快速同步释放的Ca^2+感受器而发挥作用。现在已知synaptotagminⅠ在胞吐和胞吞两个过程中都扮演重要角色。  相似文献   

8.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

9.
鲍璇 《实验生物学报》1989,22(3):325-335
Our object was to characterize the morphological changes of coated vesicles and synaptic membranes during synaptogenesis. Neurons from spinal cords of fetal mice were established as isolated cells in primary culture. After a few days in vitro, the neurons extended their neurites and started their interaction. At timed intervals thereafter, cultures were fixed for electron microscopic observation. Coated vesicles were prominent in the neuronal cytoplasm at the time of synaptogenesis (about 7-10 days in vitro). Similar vesicles were seen in continuity with some cisternae in the Golgi regions and there was an increase in number during the synaptogenic period. Indeed it is not established whether the coated vesicles were exocytotic or pinocytotic in nature, but the cisternae which were in continuity with coated vesicles could be labelled by glucose-6-phosphatase (G6Pase) but not by thiamine pyrophosphatase (TPPase). Such vesicles were also seen in continuity with the neuronal plasmalemma near the closest contact site and contributed their undercoating to pre- and postsynaptic densities. The formation of bilateral membrane specialization was described as being structurally similar to synaptic active zones and appeared to be the first definitive sign of synapseformation. It has been suggested that the synaptic dense material may derive wholly or in part from the exocytic coated vesicles which apparently budding off from endoplasmic reticulum cisternae. This incorporation could provide the mechanism for confining specific characteristics of neuronal membrane to the synaptic region.  相似文献   

10.
肉毒杆菌神经毒素(BoNT)作用机制的研究近年取得的主要进展是:a.证明BoNT是通过降低神经递质释放系统对Ca2+的敏感性阻遏突触传递;直接将BoNT导入胞内不显示胆碱能专一性.b.BoNT与细胞表面的结合包括低亲和与高亲和相继两步,有不同的受体.c.BoNT的作用包括毒素与受体的结合,内吞和导入,变构、易位以及毒素作为酶在胞内酶裂与胞吐有关的蛋白质等过程.毒素重链的C端半段、N端半段及轻链分别是与上述过程有关的功能域.  相似文献   

11.
12.
Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts.  相似文献   

13.
Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.   相似文献   

14.
神经递质的释放在神经信号传导中起着至关重要的作用.神经递质释放严格依赖SNARE蛋白的动态组装和钙离子触发的膜融合过程.最新研究发现,神经递质释放还受到神经退行性疾病中关键的标志蛋白分子的影响.当前研究者以体外膜融合重组体系为基础,发展了多种单分子生物物理技术,为进一步阐明神经递质释放的分子机制和神经退行性疾病的发病机理提供了新的视角和手段.  相似文献   

15.
突触泡蛋白2(SV2)是一类跨膜糖蛋白,定位于脊椎动物神经元及内分泌细胞,与神经递质的释放、内分泌泡胞吐作用、突触泡稳态的维持、神经肌肉接头的形成及肾上腺素能受体α2C的定位密切相关。最近还发现SV2是肉毒神经毒素BoNT/A的受体,介导BoNT/A进入神经元。SV2可作为突触泡标记蛋白,广泛应用于生物学研究及肿瘤诊断。此外,SV2还是抗癫痫药物的作用靶标。  相似文献   

16.
In this overview current insights in the regulation of presynaptic transmitter release, mainly acquired in studies using isolated CNS nerve terminals are highlighted. The following aspects are described. (i) The usefulness of pinched-off nerve terminals, so-called synaptosomes, for biochemical and ultrastructural studies of presynaptic stimulus-secretion coupling. (ii) The regulation of neurotransmitter release by multiple Ca2+ channels, with special emphasis on the specificity of different classes of these channels with respect to the release of distinct types of neurotransmitters, that are often co-localized, such as amino acids and neuropeptides. (iii) Possible molecular mechanisms involved in targeting synaptic vesicle (SV) traffic toward the active zone. (iv) The role of presynaptic receptors in regulating transmitter release, with special emphasis on different glutamate subtype receptors. Isolated nerve terminals are of great value as model system in order to obtain a better understanding of the regulation of the release of distinct classes of neurotransmitters in tiny CNS nerve endings.  相似文献   

17.
We present a simple model of phasic neurotransmitter release whichreproduces the salient features of chemical neurotransmission. The synapticvesicle cycle has been modelled as a set of biochemical reactionsrepresented by a system of coupled differential equations. These equationshave been solved analytically to obtain the time dependent behaviour of thesystem on perturbation from the steady state. The scheme of the synapticvesicle network has been emphasized and its role in determining some of themajor experimentally observed properties of synaptic transmission has beendiscussed, which includes the biphasic decay of the rate neurotransmitterrelease even under sustained stimulation. Another interesting outcome ofthis theoretical exercise is the saturation of total release with thecalcium dependent rate constant. The theoretically calculated values oftotal release fit very well into a sigmoidal saturating function with afourth order cooperativity exponent similar to the empiricalDodge–Rahamimoff equation. It appears that the synaptic vesiclenetwork itself is responsible for some of the major properties associatedwith chemical neurotransmission.  相似文献   

18.
Monoclonal antibodies were generated by immunizing mice with chick brain synaptic membranes and screening for immunoprecipitation of solubilized conotoxin GVIA receptors (N-type calcium channels). Antibodies against two synaptic proteins (p35--syntaxin 1 and p58--synaptotagmin) were produced and used to purify and characterize a ternary complex containing N-type channels associated with these two proteins. These results provided the first evidence for a specific interaction between presynaptic calcium channels and SNARE proteins involved in synaptic vesicle docking and calcium-dependent exocytosis. Immunoprecipitation experiments supported the conclusion that syntaxin 1/SNAP-25/VAMP/synaptotagmin I or II complexes associate with N-type, P/Q-type, but not L-type calcium channels from rat brain nerve terminals. Immunofluorescent confocal microscopy at the frog neuromuscular junction was consistent with the co-localization of syntaxin 1, SNAP-25, and calcium channels, all of which are predominantly expressed at active zones of the presynaptic plasma membrane facing post-synaptic folds rich in acetylcholine receptors. The interaction of proteins implicated in calcium-dependent exocytosis with presynaptic calcium channels may locate the sensor(s) that trigger vesicle fusion within a microdomain of calcium entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号