首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Adachi  U K Laemmli 《The EMBO journal》1994,13(17):4153-4164
RPA is a cellular, three-subunit, single-stranded (ss) DNA binding protein, which assists T-antigen in the assembly of the pre-priming complex in the SV40 replication system. By immunodepletion and complementation, we have identified RPA as an essential factor for cellular DNA replication in Xenopus extracts. RPA assembles post-mitotically on the decondensing chromosomes into numerous subnuclear pre-replication centres (preRCs) which serve, upon formation of the nuclear membrane, as RCs for the initiation of DNA synthesis. By a variety of experiments including the use of isolated components, we demonstrate that an inactive cdc2-cyclin B kinase complex is essential to allow post-mitotic assembly of the preRCs. In contrast, the active cdk2-cyclin A kinase does not impede or facilitate the assembly of preRCs. Digestion analysis using the single-strand-specific P1 nuclease as well as competition experiments with ssDNA, reveal that replication-associated unwinding of the DNA, assisted by RPA, requires the formation of the nuclear membrane. The p21 cdk-interacting protein Cip1 appears to inhibit DNA replication prior to the unwinding DNA step, but after assembly of preRC and nuclear reconstruction.  相似文献   

2.
Maiorano D  Cuvier O  Danis E  Méchali M 《Cell》2005,120(3):315-328
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci.  相似文献   

3.
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.  相似文献   

4.
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.  相似文献   

5.
Previous studies have suggested that cell cycle-dependent changes in the affinity of the origin recognition complex (ORC) for chromatin are involved in regulating initiation of DNA replication. To test this hypothesis, chromatin lacking functional ORCs was isolated from metaphase hamster cells and incubated in Xenopus egg extracts to initiate DNA replication. Intriguingly, Xenopus ORC rapidly bound to hamster somatic chromatin in a Cdc6-dependent manner and was then released, concomitant with initiation of DNA replication. Once pre-replication complexes (pre-RCs) were assembled either in vitro or in vivo, further binding of XlORC was inhibited. Neither binding nor release of XlORC was affected by inhibitors of either cyclin-dependent protein kinase activity or DNA synthesis. In contrast, inhibition of pre-RC assembly, either by addition of Xenopus geminin or by depletion of XlMcm proteins, augmented ORC binding by inhibiting ORC release. These results demonstrate a programmed release of XlORC from somatic cell chromatin as it enters S phase, consistent with the proposed role for ORC in preventing re-initiation of DNA replication during S phase.  相似文献   

6.
We report that a plasmid replicating in Xenopus egg extracts becomes negatively supercoiled during replication initiation. Supercoiling requires the initiation factor Cdc45, as well as the single-stranded DNA-binding protein RPA, and therefore likely represents origin unwinding. When unwinding is prevented, Cdc45 binds to chromatin whereas DNA polymerase alpha does not, indicating that Cdc45, RPA, and DNA polymerase alpha bind chromatin sequentially at the G1/S transition. Whereas the extent of origin unwinding is normally limited, it increases dramatically when DNA polymerase alpha is inhibited, indicating that the helicase that unwinds DNA during initiation can become uncoupled from the replication fork. We discuss the implications of these results for the location of replication start sites relative to the prereplication complex.  相似文献   

7.
《The Journal of cell biology》1993,122(5):993-1002
Xenopus egg extracts treated with the protein kinase inhibitor 6- dimethylaminopurine (6-DMAP) are unable to support the initiation of DNA replication. Nuclei assembled in 6-DMAP extracts behave as though they are in G2, and will not undergo another round of DNA replication until passage through mitosis. 6-DMAP extracts are functionally devoid of a replication factor that modifies chromatin in early G1 before nuclear envelope assembly, but which is itself incapable of crossing the nuclear envelope. This chromatin modification is capable of supporting only a single round of semiconservative replication. The behavior of this replication factor is sufficient to explain why eukaryotic DNA is replicated once and only once in each cell cycle, and conforms to the previous model of a Replication Licensing Factor. Cell cycle analysis shows that this putative Licensing Factor is inactive during metaphase, but becomes rapidly activated on exit from metaphase when it can modify chromatin before nuclear envelope assembly is complete.  相似文献   

8.
The origin-recognition complex (ORC) has an essential role in defining DNA replication origins and in chromosome segregation. Recent studies in Drosophila orc2 mutants, and in human cells depleted of ORC2, have suggested that this factor is also implicated in mitotic chromosome assembly. We asked whether ORC was required for M phase chromosome assembly independently of its function in DNA replication. We performed depletion assays and reconstitution experiments in Xenopus egg extracts, in conditions of M phase chromosome assembly coupled or uncoupled from DNA replication. We show that, although ORC is dispensable for mitotic chromosome condensation, it is necessary at the interphase-mitosis transition for proper mitotic chromosome assembly to occur in a reaction not strictly dependent on DNA replication. This function involves the recruitment to chromatin of cdc2 kinase and the chromatin disassembly of interphasic replication protein A (RPA) foci. Furthermore, we show that mutations of RPA at the cdc2 kinase site prevents RPA dissociation from chromatin and impairs mitotic chromosome assembly without affecting DNA replication. Our results support the conclusion that in addition to its role in the assembly of prereplication complexes (pre-RCs), at the G1-S transition, ORC is also required for their disassembly at mitotic entry.  相似文献   

9.
The role of SV40 large tumor T-antigen in replication of viral DNA is well established, but it is still unclear how T-antigen triggers cellular replication and cell transformation in non-permissive cells. Here, we used Xenopus egg extracts which reproduce most nuclear events linked to the cell cycle in vitro to analyze its interaction with genomic chromatin during the cell cycle. We show that T-antigen associates with chromatin before the nuclear membrane formation, and further demonstrate that the nuclear membrane is not necessary for its import into the nucleus. We show that the interaction of T-antigen with the endogenous chromatin does not occur at replication foci nor at RPA pre-replication centers. Immunoprecipitations as well as sucrose gradient experiments, indicate that the endogenous pool of p53 interacts with T-antigen. In addition, a transient association of both proteins with the nuclear matrix is observed during the ongoing DNA synthesis. These data are discussed in view of the T-antigen and p53 activity during the cell cycle.  相似文献   

10.
DNA replication in higher eukaryotic cells occurs at a large number of discrete sites called replication foci. We have previously purified a protein, focus-forming activity 1 (FFA-1), which is involved in the assembly of putative prereplication foci in Xenopus egg extracts. FFA-1 is the orthologue of the Werner syndrome gene product (WRN), a member of the RecQ helicase family. In this paper we show that FFA-1 colocalizes with sites of DNA synthesis and the single-stranded DNA binding protein, replication protein A (RPA), in nuclei reconstituted in the egg extract. In addition, we show that two glutathione S-transferase FFA-1 fusion proteins can inhibit DNA replication in a dominant negative manner. The dominant negative effect correlates with the incorporation of the fusion proteins into replication foci to form "hybrid foci," which are unable to engage in DNA replication. At the biochemical level, RPA can interact with FFA-1 and specifically stimulates its DNA helicase activity. However, in the presence of the dominant negative mutant proteins, the stimulation is prevented. These results provide the first direct biochemical evidence of an important role for FFA-1 in DNA replication.  相似文献   

11.
Quiescent cells from adult vertebrate liver and contact-inhibited or serum-deprived tissue cultures are active metabolically but do not carry out nuclear DNA replication and cell division. Replication of intact nuclei isolated from either quiescent Xenopus liver or cultured Xenopus A6 cells in quiescence was barely detectable in interphase extracts of Xenopus laevis eggs, although Xenopus sperm chromatin was replicated with approximately 100% efficiency in the same extracts. Permeabilization of nuclei from quiescent Xenopus liver or cultured Xenopus epithelial A6 cells did not facilitate efficient replication in egg extracts. Moreover, replication of Xenopus sperm chromatin in egg extracts was strongly inhibited by a soluble extract of isolated Xenopus liver nuclei; in contrast, complementary-strand synthesis on single-stranded DNA templates in egg extracts was not affected. Inhibition was specific to endogenous molecules localized preferentially in quiescent as opposed to proliferating cell nuclei, and was not due to suppression of cdk2 kinase activity. Extracts of Xenopus liver nuclei also inhibited growth of sperm nuclei formed in egg extracts. However, the rate and extent of decondensation of sperm chromatin in egg extracts were not affected. The formation of prereplication centers detected by anti-RP-A antibody was not affected by extracts of liver nuclei, but formation of active replication foci was blocked by the same extracts. Inhibition of DNA replication was alleviated when liver nuclear extracts were added to metaphase egg extracts before or immediately after Ca++ ion-induced transition to interphase. A plausible interpretation of our data is that endogenous inhibitors of DNA replication play an important role in establishing and maintaining a quiescent state in Xenopus cells, both in vivo and in cultured cells, perhaps by negatively regulating positive modulators of the replication machinery.  相似文献   

12.
Previous studies have shown that Xenopus egg extract can initiate DNA replication in purified DNA molecules once the DNA is organized into a pseudonucleus. DNA replication under these conditions is independent of DNA sequence and begins at many sites distributed randomly throughout the molecules. In contrast, DNA replication in the chromosomes of cultured animal cells initiates at specific, heritable sites. Here we show that Xenopus egg extract can initiate DNA replication at specific sites in mammalian chromosomes, but only when the DNA is presented in the form of an intact nucleus. Initiation of DNA synthesis in nuclei isolated from G1-phase Chinese hamster ovary cells was distinguished from continuation of DNA synthesis at preformed replication forks in S-phase nuclei by a delay that preceded DNA synthesis, a dependence on soluble Xenopus egg factors, sensitivity to a protein kinase inhibitor, and complete labeling of nascent DNA chains. Initiation sites for DNA replication were mapped downstream of the amplified dihydrofolate reductase gene region by hybridizing newly replicated DNA to unique probes and by hybridizing Okazaki fragments to the two individual strands of unique probes. When G1-phase nuclei were prepared by methods that preserved the integrity of the nuclear membrane, Xenopus egg extract initiated replication specifically at or near the origin of bidirectional replication utilized by hamster cells (dihydrofolate reductase ori-beta). However, when nuclei were prepared by methods that altered nuclear morphology and damaged the nuclear membrane, preference for initiation at ori-beta was significantly reduced or eliminated. Furthermore, site-specific initiation was not observed with bare DNA substrates, and Xenopus eggs or egg extracts replicated prokaryotic DNA or hamster DNA that did not contain a replication origin as efficiently as hamster DNA containing ori-beta. We conclude that initiation sites for DNA replication in mammalian cells are established prior to S phase by some component of nuclear structure and that these sites can be activated by soluble factors in Xenopus eggs.  相似文献   

13.
Before initiation of DNA replication, origin recognition complex (ORC) proteins, cdc6, and minichromosome maintenance (MCM) proteins bind to chromatin sequentially and form preinitiation complexes. Using Xenopus laevis egg extracts, we find that after the formation of these complexes and before initiation of DNA replication, cdc6 is rapidly removed from chromatin, possibly degraded by a cdk2-activated, ubiquitin-dependent proteolytic pathway. If this displacement is inhibited, DNA replication fails to initiate. We also find that after assembly of MCM proteins into preinitiation complexes, removal of the ORC from DNA does not block the subsequent initiation of replication. Importantly, under conditions in which both ORC and cdc6 protein are absent from preinitiation complexes, DNA replication is still dependent on cdk2 activity. Therefore, the final steps in the process leading to initiation of DNA replication during S phase of the cell cycle are independent of ORC and cdc6 proteins, but dependent on cdk2 activity.  相似文献   

14.
In this article, we study how intercalation-induced changes in chromatin and DNA topology affect chromosomal DNA replication using Xenopus egg extracts. Unexpectedly, intercalation by ethidium or doxorubicin prevents formation of a functional nucleus: although nucleosome formation occurs, DNA decondensation is arrested, membranous vesicles accumulate around DNA but do not fuse to form a nuclear membrane, active transport is abolished and lamins are found on chromatin, but do not assemble into a lamina. DNA replication is inhibited at the stage of initiation complex activation, as shown by molecular combing of DNA and by the absence of checkpoint activation. Replication of single-stranded DNA is not prevented. Surprisingly, in spite of the absence of nuclear function, DNA-replication proteins of pre-replication and initiation complexes are loaded onto chromatin. This is a general phenomenon as initiation complexes could also be seen without ethidium in membrane-depleted extracts which do not form nuclei. These results suggest that DNA or chromatin topology is required for generation of a functional nucleus, and activation, but not formation, of initiation complexes.  相似文献   

15.
BACKGROUND: The DNA replication checkpoint ensures that mitosis is not initiated before DNA synthesis is completed. Recent studies using Xenopus extracts have demonstrated that activation of the replication checkpoint and phosphorylation of the Chk1 kinase are dependent on RNA primer synthesis by DNA polymerase alpha, and it has been suggested that the ATR kinase-so-called because it is related to the product of the gene that is mutated in ataxia telangiectasia (ATM) and to Rad3 kinase-may be an upstream component of this response. It has been difficult to test this hypothesis as an ATR-deficient system suitable for biochemical studies has not been available. RESULTS: We have cloned the Xenopus laevis homolog of ATR (XATR) and studied the function of the protein in Xenopus egg extracts. Using a chromatin-binding assay, we found that ATR associates with chromatin after initiation of replication, dissociates from chromatin upon completion of replication, and accumulates in the presence of aphidicolin, an inhibitor of DNA replication. Its association with chromatin was inhibited by treatment with actinomycin D, an inhibitor of RNA primase. There was an early rise in the activity of Cdc2-cyclin B in egg extracts depleted of ATR both in the presence or absence of aphidicolin. In addition, the premature mitosis observed upon depletion of ATR was accompanied by the loss of Chk1 phosphorylation. CONCLUSIONS: ATR is a replication-dependent chromatin-binding protein, and its association with chromatin is dependent on RNA synthesis by DNA polymerase alpha. Depletion of ATR leads to premature mitosis in the presence and absence of aphidicolin, indicating that ATR is required for the DNA replication checkpoint.  相似文献   

16.
Recruitment of DNA polymerases onto replication origins is a crucial step in the assembly of eukaryotic replication machinery. A previous study in budding yeast suggests that Dpb11 controls the recruitment of DNA polymerases alpha and epsilon onto the origins. Sld2 is an essential replication protein that interacts with Dpb11, but no metazoan homolog has yet been identified. We isolated Xenopus RecQ4 as a candidate Sld2 homolog. RecQ4 is a member of the metazoan RecQ helicase family, and its N-terminal region shows sequence similarity with Sld2. In Xenopus egg extracts, RecQ4 is essential for the initiation of DNA replication, in particular for chromatin binding of DNA polymerase alpha. An N-terminal fragment of RecQ4 devoid of the helicase domain could rescue the replication activity of RecQ4-depleted extracts, and antibody against the fragment inhibited DNA replication and chromatin binding of the polymerase. Further, N-terminal fragments of RecQ4 physically interacted with Cut5, a Xenopus homolog of Dpb11, and their ability to bind to Cut5 closely correlated with their ability to rescue the replication activity of the depleted extracts. Our data suggest that RecQ4 performs an essential role in the assembly of replication machinery through interaction with Cut5 in vertebrates.  相似文献   

17.
M Cou  S E Kearsey    M Mchali 《The EMBO journal》1996,15(5):1085-1097
A Xenopus homologue of Schizosaccharomyces pombe cdc21 has been characterized as a new member of the MCM family of proteins. The cdc21 protein exhibits cell-cycle dependent chromatin binding and phosphorylation in association with S-phase control. Cdc21 binds to decondensing chromatin at the end of mitosis, localizing to numerous foci which form prior to reconstitution of the nuclear membrane. The association of cdc21 with chromatin occurs in membrane-free high speed extracts and is resistant to detergent extraction. The spatial organization of the cdc21 foci resembles that of pre-replication centres though no co-localization with RP-A was observed. Cdc21 remains bound to chromatin during the initiation of DNA replication and is displaced as the DNA replication forks progress. These subnuclear changes in localization correlate with cell-cycle-regulated changes in phosphorylation. Cdc21 binds to chromatin in an underphosphorylated state, but in early S phase the nuclear localized cdc21 is partially phosphorylated before it is displaced from the chromatin. Cytoplasmic cdc21 remains underphosphorylated but at the beginning of mitosis the entire pool of cdc21 is hyperphosphorylated, possibly by the cdc2/cyclin B kinase. These properties identify Xenopus cdc21 as a possible component of the DNA licensing factor.  相似文献   

18.
《The Journal of cell biology》1993,123(6):1321-1331
Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation.  相似文献   

19.
Lee J  Kumagai A  Dunphy WG 《Molecular cell》2003,11(2):329-340
Claspin is required for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. We show here that Claspin associates with chromatin in a regulated manner during S phase. Binding of Claspin to chromatin depends on the pre-replication complex (pre-RC) and Cdc45 but not on replication protein A (RPA). These dependencies suggest that binding of Claspin occurs around the time of initial DNA unwinding at replication origins. By contrast, both ATR and Rad17 require RPA for association with DNA. Claspin, ATR, and Rad17 all bind to chromatin independently. These findings suggest that Claspin plays a role in monitoring DNA replication during S phase. Claspin, ATR, and Rad17 may collaborate in checkpoint regulation by detecting different aspects of a DNA replication fork.  相似文献   

20.
M Dasso  T Seki  Y Azuma  T Ohba    T Nishimoto 《The EMBO journal》1994,13(23):5732-5744
The Ran protein is a small GTPase that has been implicated in a large number of nuclear processes including transport. RNA processing and cell cycle checkpoint control. A similar spectrum of nuclear activities has been shown to require RCC1, the guanine nucleotide exchange factor (GEF) for Ran. We have used the Xenopus laevis egg extract system and in vitro assays of purified proteins to examine how Ran or RCC1 could be involved in these numerous processes. In these studies, we employed mutant Ran proteins to perturb nuclear assembly and function. The addition of a bacterially expressed mutant form of Ran (T24N-Ran), which was predicted to be primarily in the GDP-bound state, profoundly disrupted nuclear assembly and DNA replication in extracts. We further examined the molecular mechanism by which T24N-Ran disrupts normal nuclear activity and found that T24N-Ran binds tightly to the RCC1 protein within the extract, resulting in its inactivation as a GEF. The capacity of T24N-Ran-blocked interphase extracts to assemble nuclei from de-membranated sperm chromatin and to replicate their DNA could be restored by supplementing the extract with excess RCC1 and thereby providing excess GEF activity. Conversely, nuclear assembly and DNA replication were both rescued in extracts lacking RCC1 by the addition of high levels of wild-type GTP-bound Ran protein, indicating that RCC1 does not have an essential function beyond its role as a GEF in interphase Xenopus extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号