首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

2.
R Sakai  A Iwamatsu  N Hirano  S Ogawa  T Tanaka  H Mano  Y Yazaki    H Hirai 《The EMBO journal》1994,13(16):3748-3756
p47v-crk (v-Crk), a transforming gene product containing Src homology (SH)-2 and -3 domains, induces an elevated level of tyrosine phosphorylation of several cellular proteins. Among these proteins, a 125-135 kDa protein (p130) shows marked phosphorylation at tyrosines and tight association with v-Crk, suggesting a direct signal mediator of v-Crk. Here we report the molecular cloning of rat p130 by immunoaffinity purification. The p130 is a novel SH3-containing signaling molecule with a cluster of multiple putative SH2-binding motifs of v-Crk. Immunochemical analyses revealed that p130 is highly phosphorylated at tyrosines during transformation by p60v-src (v-Src), as well as by v-Crk, forming stable complexes with these oncoproteins. The p130 behaves as an extremely potent substrate of kinase activity included in the complexes and it is a major v-Src-associated substrate of the Src kinase by partial peptidase mapping. Subcellular fractionation demonstrated that the cytoplasmic p130 could move to the membrane upon tyrosine phosphorylation. The p130 (designated Cas for Crk-associated substrate) is a common cellular target of phosphorylation signal via v-Crk and v-Src oncoproteins, and its unique structure indicates the possible role of p130Cas in assembling signals from multiple SH2-containing molecules.  相似文献   

3.
4.
Mechanical stretch-induced activation of c-Src is an important step for signal transduction of stretch-induced fetal rat lung cell proliferation. This process appears to be mediated through actin filament-associated protein (AFAP), encoded by a gene originally cloned from the chicken. In the present study, we cloned the rat AFAP gene from fetal rat lungs. Its mRNA and protein are differentially expressed among various tissues. The protein is colocalized with actin filaments in fetal rat lung epithelial cells and fibroblasts. Mechanical stretch increased tyrosine phosphorylation of rat AFAP and its binding to c-Src within the initial several minutes. Src SH2 and SH3 binding motifs are highly conserved in the AFAP proteins (from chicken, rat to human). On the basis of the molecular structure of AFAP protein, we speculate that it is an adaptor in mechanical stretch-induced activation of c-Src. A novel model of mechanoreception is proposed.  相似文献   

5.
A mutation in the tub gene leads to maturity-onset obesity, insulin resistance, and progressive retinal and cochlear degeneration in mice. tub is a member of a growing family of genes that encode proteins of unknown function that are remarkably conserved across species. The absence of obvious transmembrane domain(s) or signal sequence peptide motif(s) suggests that Tub is an intracellular protein. Additional sequence analysis revealed the presence of putative tyrosine phosphorylation motifs and Src homology 2 (SH2)-binding sites. Here we demonstrate that in CHO-IR cells, transfected Tub is phosphorylated on tyrosine in response to insulin and insulin-like growth factor-1 and that in PC12 cells, insulin but not EGF induced tyrosine phosphorylation of endogenous Tub. In vitro, Tub is phosphorylated by purified insulin receptor kinase as well as by Abl and JAK 2 but not by epidermal growth factor receptor and Src kinases. Furthermore, upon tyrosine phosphorylation, Tub associated selectively with the SH2 domains of Abl, Lck, and the C-terminal SH2 domain of phospholipase Cgamma and insulin enhanced the association of Tub with endogenous phospholipase Cgamma in CHO-IR cells. These data suggest that Tub may function as an adaptor protein linking the insulin receptor, and possibly other protein-tyrosine kinases, to SH2-containing proteins.  相似文献   

6.
The amino-termina, noncatalytic half of Src contains two domains, designated the Src homology 2 (SH2) and Src homology 3 (SH3) domains, that are highly conserved among members of the Src family of tyrosine kinases. The SH2 domain (which can be further divided into the B and C homology boxes) and the SH3 domain (also referred to as the A box) are also found in several proteins otherwise unrelated to protein tyrosine kinases. It is believed that these domains are important for directing specific protein-protein interactions necessary for the proper functioning of Src. To determine the importance of the SH2 and SH3 domains in regulating the functions of c-Src, we evaluated mutants of c-Src lacking the A box (residues 88 to 137), the B box (residues 148 to 187) or the C box (residues 220 to 231). Each of these deletions caused a 14- to 30-fold increase in the in vitro level of kinase activity of c-Src. Chicken embryo fibroblasts expressing the deletion mutants displayed a transformed cell morphology, formed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Src substrates p36, p85, p120, p125, the GTPase-activating protein (GAP), and several GAP-associated proteins were phosphorylated on tyrosine in cells expressing the A, B, or C box deletion mutant. p110 was highly phosphorylated in cells expressing the C box mutant, was weakly phosphorylated in cells expressing the B box mutant, and was not phosphorylated in cells expressing the A box mutant. Expression of the mutant proteins caused a reorganization of the actin cytoskeleton similar to that seen in v-Src-transformed cells. In addition, deletion of the A, B, or C box did not diminish the transforming or enzymatic activity of an activated variant of c-Src, E378G. These data indicate that deletion of the A, B, or C homology box causes an activation of the catalytic and transforming potential of c-Src and that while these mutations caused subtle differences in substrate phosphorylation, the homology boxes are not required for many of the phenotypic changes associated with transformation by Src.  相似文献   

7.
8.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.  相似文献   

9.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

10.
The scaffold protein XB130 regulates cell growth, survival, and migration. Yeast two-hybrid screening suggests that XB130 interacts with another scaffold protein, Tks5. We hypothesized that XB130 and Tks5 form a macromolecular complex to mediate signal transduction cascades for the regulation of cell growth and survival. Coimmunoprecipitation demonstrated that XB130 and Tks5 interact endogenously and form a complex with Src tyrosine kinase. Structure–function studies showed that the fifth SH3 domain of Tks5 binds to the N-terminus of XB130, which contains polyproline-rich motifs. Cell growth and survival studies revealed that down-regulation of XB130 and/or Tks5 reduced cell proliferation, resulting in cell cycle inhibition at the G1 phase and increased caspase 3 activity and apoptosis. Moreover, cell proliferation and survival were increased by overexpression of XB130 or Tks5 but decreased when XB130/Tks5 binding was disrupted by overexpression of XB130 N-terminal deleted mutant and/or Tks5 fifth SH3 domain W1108A mutant. Furthermore, down-regulation of XB130 and/or Tks5 inhibited serum- and growth factor–induced Src activation and downstream phosphorylation of PI3K and Akt. Our results suggest that Tks5, similar to XB130, plays a role in cell proliferation and cell survival and that the interaction between XB130 and Tks5 appears to be critical for regulation of Src-mediated cellular homeostasis.  相似文献   

11.
The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.  相似文献   

12.
It is well established that CD21 activation on human B cell surface triggers B cell proliferation. We previously demonstrated that CD21 activation also triggers tyrosine phosphorylation of two components, p95 and p120, both interacting with SH2 domains of the p85 subunit of PI 3-kinase. We successively identified p95 as the nucleolin and the first signal transduction pathway specifically triggered by CD21 activation, i.e.: pp60Src activation, tyrosine phosphorylation of p95 nucleolin, its interaction with SH2 domains of p85 subunit and PI 3-kinase activation, followed by AKT-GSK-3 activations. We herein identified the p120 component as the protooncoprotein Cbl and the first steps associated to its activation. First, CD21 activation triggered Cbl tyrosine phosphorylation, which required c-Src kinase but not PI 3-kinase or Syk kinase activities. Involvement of Src kinase in this step was supported by inhibition of Cbl phosphorylation and its interactions with other components when cells were either preincubated with specific Src inhibitor or transfected with dominant-negative c-Src form. Second, once tyrosine phosphorylated, Cbl interacts with SH2 domains of p85 subunit, SH2 domains of Crk-L and with tyrosine phosphorylated Syk kinase. The third and unexpected feature was to found that, at the contrary of BCR or of CD19 (herein also analyzed for the first time), CD21 activation triggers dissociation of Cbl-Vav complex. Thus, these results provide the first molecular basis of a new signal transduction pathway specifically triggered by CD21 activation.  相似文献   

13.
The protein tyrosine kinase (PTK) Csk is a potent negative regulator of several signal transduction processes, as a consequence of its exquisite ability to inactivate Src-related PTKs. This function requires not only the kinase domain of Csk, but also its Src homology 3 (SH3) and SH2 regions. We showed previously that the Csk SH3 domain mediates highly specific associations with two members of the PEP family of nonreceptor protein tyrosine phosphatases (PTPs), PEP and PTP-PEST. In comparison, the Csk SH2 domain interacts with several tyrosine phosphorylated molecules, presumed to allow targetting of Csk to sites of Src family kinase activation. Herein, we attempted to understand better the regulation of Csk by identifying ligands for its SH2 domain. Using a modified yeast two-hybrid screen, we uncovered the fact that Csk associates with PTP-HSCF, the third member of the PEP family of PTPs. This association was documented not only in yeast cells but also in a heterologous mammalian cell system and in cytokine-dependent hemopoietic cells. Surprisingly, the Csk-PTP-HSCF interaction was found to be mediated by the Csk SH2 domain and two putative sites of tyrosine phosphorylation in the noncatalytic portion of PTP-HSCF. Transfection experiments indicated that Csk and PTP-HSCF synergized to inhibit signal transduction by Src family kinases and that this cooperativity was dependent on the domains mediating their association. Finally, we obtained evidence that PTP-HSCF inactivated Src-related PTKs by selectively dephosphorylating the positive regulatory tyrosine in their kinase domain. Taken together, these results demonstrate that part of the function of the Csk SH2 domain is to mediate an inducible association with a PTP, thereby engineering a more efficient inhibitory mechanism for Src-related PTKs. Coupled with previously published observations, these data also establish that Csk forms complexes with all three known members of the PEP family.  相似文献   

14.
15.
Neurotrophin signaling plays important roles in regulating the survival, differentiation, and maintenance of neurons in the nervous system. Binding of neurotrophins to their cognate receptors Trks induces transactivation and phosphorylation of the receptor at several tyrosine residues. These phosphorylated tyrosine residues then serve as crucial docking sites for adaptor proteins containing a Src homology 2 or phosphotyrosine binding domain, which upon association with the receptor initiates multiple signaling events to mediate the action of neurotrophins. Here we report the identification of a Src homology 2 domain-containing molecule, SLAM-associated protein (SAP), as an interacting protein of TrkB in a yeast two-hybrid screen. SAP was initially identified as an adaptor molecule in SLAM family receptor signaling for regulating interferon-gamma secretion. In the current study, we found that SAP interacted with TrkA, TrkB, and TrkC receptors in vitro and in vivo. Binding of SAP required Trk receptor activation and phosphorylation at the tyrosine 674 residue, which is located in the activation loop of the kinase domain. Overexpression of SAP with Trk attenuated tyrosine phosphorylation of the receptors and reduced the binding of SH2B and Shc to TrkB. Moreover, overexpression of SAP in PC12 cells suppressed the nerve growth factor-dependent activation of extracellular signal-regulated kinases 1/2 and phospholipase Cgamma, in addition to inhibiting neurite outgrowth. In summary, our findings demonstrated that SAP may serve as a negative regulator of Trk receptor activation and downstream signaling.  相似文献   

16.
GTPase-activating protein (GAP) enhances the rate of GTP hydrolysis by cellular Ras proteins and is implicated in mitogenic signal transduction. GAP is phosphorylated on tyrosine in cells transformed by Rous sarcoma virus and serves as an in vitro substrate of the viral Src (v-Src) kinase. Our previous studies showed that GAP complexes stably with normal cellular Src (c-Src), although its association with v-Src is less stable. To further investigate the molecular basis for interactions between GAP and the Src kinases, we examined GAP association with and phosphorylation by a series of c-Src and v-Src mutants. Analysis of GAP association with c-Src/v-Src chimeric proteins demonstrates that GAP associates stably with Src proteins possessing low kinase activity and poorly with activated Src kinases, especially those that lack the carboxy-terminal segment of c-Src containing the regulatory amino acid Tyr-527. Phosphorylated Tyr-527 is a major determinant of c-Src association with GAP, as demonstrated by c-Src point mutants in which Tyr-527 is changed to Phe. While the isolated amino-terminal half of the c-Src protein is insufficient for stable GAP association, analysis of point substitutions of highly conserved amino acid residues in the c-Src SH2 region indicate that this region also influences Src-GAP complex formation. Therefore, our results suggest that both Tyr-527 phosphorylation and the SH2 region contribute to stable association of c-Src with GAP. Analysis of in vivo phosphorylation of GAP by v-Src mutants containing deletions encompassing the SH2, SH3, and unique regions suggests that the kinase domain of v-Src contains sufficient substrate specificity for GAP phosphorylation. Even though tyrosine phosphorylation of GAP correlates to certain extent with the transforming ability of various c-Src and v-Src mutants, our data suggest that other GAP-associated proteins may also have roles in Src-mediated oncogenic transformation. These findings provide additional evidence for the specificity of Src interactions with GAP and support the hypothesis that these interactions contribute to the biological functions of the Scr kinases.  相似文献   

17.
One mechanism used by receptor tyrosine kinases to relay a signal to different downstream effector molecules is to use adaptor proteins that provide docking sites for a variety of proteins. The daughter of sevenless (dos) gene was isolated in a genetic screen for components acting downstream of the Sevenless (Sev) receptor tyrosine kinase. Dos contains a N-terminally located PH domain and several tyrosine residues within consensus binding sites for a number of SH2 domain containing proteins. The structural features of Dos and experiments demonstrating tyrosine phosphorylation of Dos upon Sev activation suggested that Dos belongs to the family of multisite adaptor proteins that include the Insulin Receptor Substrate (IRS) proteins, Gab1, and Gab2. Here, we studied the structural requirements for Dos function in receptor tyrosine kinase mediated signaling processes by expressing mutated dos transgenes in the fly. We show that mutant Dos proteins lacking the putative binding sites for the SH2 domains of Shc, PhospholipaseC-γ (PLC-γ) and the regulatory subunit of Phosphoinositide 3-kinase (PI3-K) can substitute the loss of endogenous Dos function during development. In contrast, tyrosine 801, corresponding to a predicted Corkscrew (Csw) tyrosine phosphatase SH2 domain binding site, is essential for Dos function. Furthermore, we assayed whether the Pleckstrin homology (PH) domain is required for Dos function and localization. Evidence is provided that deletion or mutation of the PH domain interferes with the function but not with localization of the Dos protein. The Dos PH domain can be replaced by the Gab1 PH domain but not by a heterologous membrane anchor, suggesting a specific function of the PH domain in regulating signal transduction.  相似文献   

18.
Conversion of mechanical force into biochemical signaling   总被引:7,自引:0,他引:7  
Physical forces play important roles in regulating cell proliferation, differentiation, and death by activating intracellular signal transduction pathways. How cells sense mechanical stimulation, however, is largely unknown. Most studies focus on cellular membrane proteins such as ion channels, integrins, and receptors for growth factors as mechanosensory units. Here we show that mechanical stretch-induced c-Src protein tyrosine kinase activation is mediated through the actin filament-associated protein (AFAP). Distributed along the actin filaments, AFAP can directly active c-Src through binding to its Src homology 3 and/or 2 domains. Mutations at these specific binding sites on AFAP blocked mechanical stretch-induced c-Src activation. Therefore, mechanical force can be transmitted along the cytoskeleton, and interaction between cytoskeletal associated proteins and enzymes related to signal transduction may convert physical forces into biochemical reactions. Cytoskeleton deformation-induced protein-protein interaction via specific binding sites may represent a novel intracellular mechanism for cells to sense mechanical stimulation.  相似文献   

19.
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号