首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Four strains of bakers' yeast were analysed for their hyperosmotic responses when in media that mimic conditions occurring in bread doughs. Two of the strains produced strong fermentative activity in medium with low osmotic stress, but produced considerably less ethanol in high sucrose concentration medium. Two other strains produced more similar fermentation activities across the range of media tested. The strains that were inhibited by high sucrose concentration were unable to produce significant amounts of glycerol under hyperosmotic conditions. By contrast, the yeasts that were not inhibited significantly by high sucrose produced a considerable amount of glycerol. The strains that produced significant glycerol exhibited efficient expression of the glycerol-3-phosphate dehydrogenase gene GPD1. These novel data on the molecular responses of industrially relevant strains of bakers' yeasts are prerequisite to designing strategies for improving the performance of industrial yeasts in high sugar concentration media.  相似文献   

2.
Leavening ability of baker's yeast exposed to hyperosmotic media   总被引:2,自引:0,他引:2  
To develop a simple and rapid method for enhancing the leavening ability of baker's yeast, we examined the fermentation ability of baker's yeast exposed to hyperosmotic media. When baker's yeast cells were incubated at 25 degrees C for 1 h in a hyperosmotic medium containing 0.5% yeast extract, 0.5% peptone and 20% sucrose, the cells showed a higher fermentation ability in the subsequent fermentation test than those untreated. The increased ratios were from 40 to 60% depending on the strains used. Glucose and fructose showed a similar effect to that of sucrose, but sorbitol was less effective. A high correlation between the intracellular glycerol content and fermentation ability after the osmotic treatment suggested that glycerol accumulated during the hyperosmotic treatment was used in the subsequent fermentation as a substrate, lessened the lag time, and consequently enhanced the fermentation ability. Various baker's yeasts also showed a high leavening ability in dough after the hyperosmotic treatment.  相似文献   

3.
AIMS: The aim of this study was to analyse the effect of osmotic stress on the biosynthesis of invertase enzyme in nonconventional yeasts. METHODS AND RESULTS: Invertase activities of the nonconventional yeast species belonging to Kluyveromyces, Schwanniomyces and Pichia genus were measured either in the presence or in the absence of various amounts of NaCl. The effect of hyperosmotic stress on the glucose consumption of Saccharomyces cerevisiae and Pichia anomala were also compared. Like S. cerevisiae, derepression of invertase synthesis in Kluyveromyces lactis, Schwanniomyces occidentalis and Pichia jadinii is inhibited by hyperosmotic stress. However, derepression of invertase synthesis in P. anomala is not affected by hyperosmotic stress. In addition, low levels of osmotic stress activated invertase synthesis three- to fourfold in P. anomala and K. lactis. CONCLUSIONS: This study shows that low levels of osmotic stress induces the invertase synthesis at very high levels in P. anomala and K. lactis. Glucose consumption was not influenced at significant levels by the hyperosmotic stress in P. anomala. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the activation of invertase synthesis by low levels of osmotic stress in P. anomala and K. lactis.  相似文献   

4.
Glycerol production by yeasts under osmotic and sulfite stress.   总被引:3,自引:0,他引:3  
The yeasts Saccharomyces cerevisiae, Candida boidinii, Pichia augusta, and Pichia anomala were tested for glycerol production both under osmotic stress and by addition of a sulfite-steering agent. The osmotic pressure was increased by employing glucose concentrations from 50 to 200 g/L and by supplementing with NaCl (40 g/L). Of all the yeasts, S. cerevisiae exhibited the highest level of osmotolerance. The increased osmotic pressure affected glycerol formation the most in C. boidinii. In both Pichia species, glycerol formation was not sufficiently induced when exposed to sugar and salt stress. The addition of 40 g/L Na2SO3 to the medium containing 100 g/L glucose shifted the metabolism of all yeasts towards glycerol formation. Saccharomyces cerevisiae achieved 68.6%, while C. boidinii reached 25.5% of the theoretical glycerol yield, respectively. The highest glycerol yield, 82.3% of the theoretical, was produced by S. cerevisiae under microaerophilic conditions.  相似文献   

5.
AIMS: To enhance the fermentation of maltotriose by industrial Saccharomyces cerevisiae strains. METHODS AND RESULTS: The capability to ferment maltotriose by an industrial yeast strain that uses this sugar aerobically was tested in shake flasks containing rich medium. While the presence of maltose in the medium did not improve maltotriose fermentation, enhanced and constitutive expression of the AGT1 permease not only increased the uptake of maltotriose, but allowed efficient maltotriose fermentation by this strain. Supplementation of the growth medium with 20 mmol magnesium l(-1) also increased maltotriose fermentation. CONCLUSIONS: Over expression of the AGT1 permease and magnesium supplementation improved maltotriose fermentation by an industrial yeast strain that respired but did not ferment this sugar. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the roles of the AGT1 permease and nutrients in the fermentation of all sugars present in starch hydrolysates, a highly desirable trait for several industrial yeasts.  相似文献   

6.
In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ~0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.  相似文献   

7.
AIMS: The study of the fermentation performance of Saccharomyces cerevisiae strains under high sugar stress during the vinification of partially dried grapes. METHODS AND RESULTS: Microvinification of partially dried grape must with sugar concentration of 35 degrees Brix was performed using four commercial strains to carry out alcoholic fermentation. A traditional red vinification without nutrients addition was applied. Yeasts displayed different efficiency to convert sugar in ethanol and varied in glycerol yield. Sugar consumption and ethanol level were attested at 80-87% and 143.5-158.0 g l(-1) respectively. High correlation between sugar and assimilable nitrogen consumption rate was observed. Statistical treatment of data by principal component analysis highlighted the different behaviours that strains exhibited in regard to the production of higher alcohols and other compounds important to wine quality. CONCLUSIONS: Saccharomyces cerevisiae strains displayed appreciable capability to overcome osmotic stress and to yield ethanol fermenting high sugar concentration grape must in winemaking condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The results provided insights on the strain contribution to wine quality subordinate to stress condition. This investigation is of applicative interest for winemaking and processing industry that use high sugar concentration musts.  相似文献   

8.
Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts.  相似文献   

9.
Improved properties of baker's yeast mutants resistant to 2-deoxy-D-glucose   总被引:3,自引:0,他引:3  
We isolated spontaneous mutants from Saccharomyces cerevisiae (baker's yeast V1) that were resistant to 2-deoxy-D-glucose and had improved fermentative capacity on sweet doughs. Three mutants could grow at the same rate as the wild type in minimal SD medium (0.17% Difco yeast nitrogen base without amino acids and ammonium sulfate, 0.5% ammonium sulfate, 2% glucose) and had stable elevated levels of maltase and/or invertase under repression conditions but lower levels in maltose-supplemented media. Two of the mutants also had high levels of phosphatase active on 2-deoxy-D-glucose-6-phosphate. Dough fermentation (CO2 liberation) by two of the mutants was faster and/or produced higher final volumes than that by the wild type, both under laboratory and industrial conditions, when the doughs were supplemented with glucose or sucrose. However, the three mutants were slower when fermenting plain doughs. Fermented sweet bakery products obtained with these mutants were of better quality than those produced by the wild type, with regard to their texture and their organoleptic properties.  相似文献   

10.
Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.  相似文献   

11.
Glycerol and other polyols are used as osmoprotectants by many organisms. Several yeasts and other fungi can take up glycerol by proton symport. To identify genes involved in active glycerol uptake in Saccharomyces cerevisiae we screened a deletion mutant collection comprising 321 genes encoding proteins with 6 or more predicted transmembrane domains for impaired growth on glycerol medium. Deletion of STL1, which encodes a member of the sugar transporter family, eliminates active glycerol transport. Stl1p is present in the plasma membrane in S. cerevisiae during conditions where glycerol symport is functional. Both the Stl1 protein and the active glycerol transport are subject to glucose-induced inactivation, following identical patterns. Furthermore, the Stl1 protein and the glycerol symporter activity are strongly but transiently induced when cells are subjected to osmotic shock. STL1 was heterologously expressed in Schizosaccharomyces pombe, a yeast that does not contain its own active glycerol transport system. In S. pombe, STL1 conferred the ability to take up glycerol against a concentration gradient in a proton motive force-dependent manner. We conclude that the glycerol proton symporter in S. cerevisiae is encoded by STL1.  相似文献   

12.
Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of d-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces naardenensis, Candida shehatae, Candida tenuis, Pachysolen tannophilus, Pichia segobiensis, and Pichia stipitis. Subsequent screening of these yeasts for their capacity to ferment d-cellobiose revealed that only Candida tenuis CBS 4435 was a good fermenter of both xylose and cellobiose under the test conditions used.  相似文献   

13.
Yeast strains were isolated from dried sweet potatoes (hoshi-imo), a traditional preserved food in Japan. Dough fermentation ability, freeze tolerance, and growth rates in molasses, which are important characteristics of commercial baker's yeast, were compared between these yeast strains and a commercial yeast derivative that had typical characteristics of commercial strains. Classification tests including pulse-field gel electrophoresis and fermentation/assimilation ability of sugars showed that almost the stains isolated belonged to Saccharomyces cerevisiae. One strain, ONY1, accumulated intracellular trehalose at a higher level than commercial strain T128. Correlated with intracellular trehalose contents, the fermentation ability of high-sugar dough containing ONY1 was higher. ONY1 also showed higher freeze tolerance in both low-sugar and high-sugar doughs. The growth rate of ONY1 was significantly higher under batch and fed-batch cultivation conditions using either molasses or synthetic medium than that of strain T128. These results suggest that ONY1 has potential commercial use as baker's yeast for frozen dough and high-sugar dough.  相似文献   

14.
Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Deltanth1), acid trehalase mutants (Deltaath1), and double mutants (Deltanth1 ath1) by using commercial baker's yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Deltanth1 and Deltaath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Deltanth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough.  相似文献   

15.
Spent sulfite pulping liquor (SSL) is a high-organic content byproduct of acid bisulfite pulp manufacture which is fermented to make industrial ethanol. SSL is typically concentrated to 240 g/l (22% w/w) total solids prior to fermentation, and contains up to 24 g/l xylose and 30 g/l hexose sugars, depending upon the wood species used. The xylose present in SSL is difficult to ferment using natural xylose-fermenting yeast strains due to the presence of inhibitory compounds, such as organic acids. Using sequential batch shake flask experiments, Saccharomyces cerevisiae 259ST, which had been genetically modified to ferment xylose, was compared with the parent strain, 259A, and an SSL adapted strain, T2, for ethanol production during SSL fermentation. With an initial SSL pH of 6, without nutrient addition or SSL pretreatment, the ethanol yield ranged from 0.32 to 0.42 g ethanol/g total sugar for 259ST, compared to 0.15-0.32 g ethanol/g total sugar for non-xylose fermenting strains. For most fermentations, minimal amounts of xylitol (<1 g/l) were produced, and glycerol yields were approximately 0.12 g glycerol/g sugar consumed. By using 259ST for SSL fermentation up to 130% more ethanol can be produced compared to fermentations using non-xylose fermenting yeast.  相似文献   

16.
E kunsanmi , T.J. & O dunfa , S.A. 1990. Ethanol tolerance, sugar tolerance and invertase activities of some yeast strains isolated from steep water of fermenting cassava tubers. Journal of Applied Bacteriology 69 , 672–675.
Thirteen yeasts isolated from the steep water of fermenting cassava tubers were screened for ethanol tolerance. Three strains which showed measurable growth in medium containing 10% (v/v) ethanol were also sugar-tolerant and grew well in medium containing 25% (w/v) glucose. One of the strains, YC3, was found to possess much higher invertase activity than the other two and could be of value in ethanol production from molasses. Further search for industrially useful yeasts in African fermented foods is suggested.  相似文献   

17.
酵母细胞对高渗环境的适应与胞内甘油累积   总被引:10,自引:0,他引:10  
甘油是包括酿酒酵母在内的许多种酵母细胞中的主要相容性溶质。为适应在高渗环境下的生存,酵母细胞将在胞内累积甘油。胞内甘油累积的增加可由甘油合成的增强,甘油利用的减弱,细胞膜通透性下降导致的胞内甘油流失的减少以及从环境中吸取更多的甘油而产生。本文综述了酵母细胞对环境渗透压变化的信号传导,高渗诱导的基因表达,环境渗透压升高时酵母细胞内甘油的累积以及甘油合成的限速步骤。  相似文献   

18.
Natural habitats of yeasts were examined for the presence of strains able to produce ethanol from d-xylose. Black knots, insect frass, and tree exudates were screened by enrichment in liquid d-xylose-yeast extract medium. These and each d-xylose-assimilating yeast in a collection from cactus fruits and Drosophila spp. were tested for alcohol production from this sugar. Among the 412 isolates examined, 36 produced more than 1 g of ethanol liter from 20 g of d-xylose liter, all under aerated conditions. Closer examination of the strains indicated that their time courses of d-xylose fermentation followed different patterns. Some strains produced more biomass than ethanol, and among these, ethanol may or may not be assimilated rapidly after depletion of d-xylose. Others produced more ethanol than biomass, but all catabolized ethanol after carbohydrate exhaustion. Ethanol production appeared best at low pH values and under mild aeration. Possible correlations between the nutritional profiles of the yeasts and their ability to produce ethanol from d-xylose were explored by multivariate analysis. d-Xylose appeared slightly better utilized by yeasts which rate poorly in terms of fermentation. The fermentation of d-glucose had no bearing on d-xylose fermentation. No specific nutritional trait could discriminate well between better d-xylose fermentors and other yeasts.  相似文献   

19.
During unsteady-state continuous culture of Saccharomyces cerevisiae on sugarcane blackstrap molasses, the invertase activity of the intact yeast cells oscillated. Disturbances were produced by changing medium composition, air rate, impeller speed, and dilution rate. The influence of the oxygen supply rate and of the dilution rate on the invertase activity depend on the medium composition. The highest invertase activity was obtained when, after a steady-state attained using unsupplemented culture medium, nutrients were added to the feeding mash. A Monod-like equation seems to be the best representation of the correlation between the specific rate of reducing sugars consumption and the specific rate of nonreducing sugar hydrolysis by the yeast cells.  相似文献   

20.
AIMS: To determine the effect of osmotic stress on yeast and to investigate the protective role of horse gram flour during very high gravity (VHG) ethanol fermentation. METHODS AND RESULTS: Saccharomyces cerevisiae was inoculated into high sugar (30-40%, w/v) containing medium with and without supplementation of horse gram flour. The fermentation experiments were carried out in batch mode. The effect of 4 or 6% of horse gram flour to the medium on the metabolic behaviour and viability of yeast was studied. Significant increase in ethanol yield up to 50% and dramatic decrease in glycerol production up to 100% was observed in the presence of horse gram flour. The fermentation rate was increased from 3 to 5 days with increased viable cell count. The physical and chemical factors of horse gram flour may aid in reducing the osmotic stress of high gravity fermentation of ethanol as well as enhancing ethanol yield. CONCLUSIONS: It was found that horse gram flour not only reduced fermentation time but also enhanced ethanol production by better utilization of sugar. SIGNIFICANCE AND IMPACT OF THE STUDY: Production of high ethanol concentration by using VHG sugar fermentation eliminates the expensive steps in the conventional process and saves time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号