首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
目的和方法 :用微血管口径直接测量技术 ,评介挥发性麻醉气体Isoflurane,KATP通道开放剂cromakalim和非特异性血管扩张剂sodiumnitroprusside对猪冠状动脉细小分支直径的作用 ,并研究了KATP通道阻断剂 glibenclamide对血管口径的影响。结果 :Glibenclamide显著阻断Isonurane和cromakalim的血管扩张作用 ,而sodiumnitroprusside则不受影响。结论 :Isoflurane扩张冠状动脉细小分支的作用是由KATP通道所中介的。  相似文献   

2.
目的和方法:用微血管口径直接测量技术,评介挥发性麻醉气体Isoflurane,KATP通道开放剂cromakalirn和非特异笥血管扩张剂sodium nitroprusside对精冠状动脉和细小分支直径的作用,并研究了KATP通道阻glibenelanide对血管口径的影响。结果:Cdibenclamide显著 Isonurane和cromalkalim的血管扩张作用,而sodiumnitrop  相似文献   

3.
KATP通道开放剂对颈动脉窦压力感受器反射的易化作用   总被引:2,自引:0,他引:2  
Yin T  Chen S  He RR 《生理学报》2000,52(2):170-174
在30只隔离灌流颈动脉窦区的麻醉大鼠, 观察了KATP通道开放剂(cromakalim, Cro)对颈动脉窦压力感受器反射的影响.结果如下: (1)以Cro (10 μmol/L)隔离灌流大鼠左侧颈动脉窦区时, 压力感受器机能曲线向左下方移位, 曲线最大斜率 (PS) 由0.36±0.01增至0.48±0.01 kPa/kPa (P<0.001), 反射性血压下降幅度(RD)由5.78±0.14增至7.87±0.12 kPa (P<0.001);阈压(TP)、平衡压(EP)和饱和压(SP)则分别从8.34±0.35, 12.71±0.25和24.89±0.25下降至6.41±0.09 kPa, 11.78±0.24 kPa, 22.56±0.16 kPa (P<0.01~0.001).其中RD, PS和TP的变化呈明显的剂量依赖性.(2)用KATP通道阻断剂格列苯脲(glibenclamide, 10 μmol/L)预处理后, Cro的上述反射效应即被阻断.(3)先给予腺苷(adenosine, 125 μmol/L)则可以加强Cro对压力感受器反射的影响.以上结果表明, KATP通道开放剂Cro对大鼠颈动脉窦压力感受器反射有易化作用, 此作用是由KATP通道开放剂引起窦壁扩张而牵张压力感受器所致.  相似文献   

4.
缺血预处理对缺血再灌注后兔脊髓磷酸腺苷代谢的影响   总被引:5,自引:0,他引:5  
目的:研究缺血参处理对缺血再灌注后兔脊髓磷酸腺苷代谢的影响。方法:往置入腹主动脉的Swan-Ganz导管气囊内注气造成兔腰髓缺血模型。将实验兔分为假手术组、缺血组和预处理组。应用反相高效液相色谱方法(reverse phase HPLC),对缺血再灌注后不同时间点腰髓组织中磷酸腺苷(ATP、ADP、AMP)的含量进行检测。结果:和假手术组相比,缺血组兔再灌后各时间点腰髓组织ATP含量有明显下降(P<0.01)。与缺血组相应时间点相比,预处理组兔再灌注后腰髓组织ATP含量明显提高(P<0.01)。结论:缺血预处理显著提高缺血再灌注后兔脊髓组织ATP含量,这可能是缺血预处理对脊髓缺血再灌注损伤产生保护作用的机制之一。  相似文献   

5.
心肌梗死是围术期最严重的并发症之一,所以减少围术期心肌梗死的风险对于围术期麻醉十分重要。大量实验研究证明,吸入麻醉药预处理可以有效减轻心肌的缺血/再灌注损伤,减少心肌梗死范围,促进心脏功能的恢复。麻醉药预处理是一个复杂的过程,这一过程触发了两个不同的时相。第一,简称为早期预处理(E预处理),包括心肌细胞内有保护作用的酶的激活;第二,称为晚期预处理(L预处理),依赖于新的心肌保护蛋白的从头合成。虽然早期预处理和晚期预处理对心肌细胞的影响是挥发性麻醉药心脏保护作用的关键,但他们对冠状动脉内皮细胞的影响也很重要,这一机制可能改善了冠状动脉手术患者的长期预后。挥发性麻醉药,对改善围术期有心肌梗死风险的非心脏手术患者的预后,尚没有得到有明确意义的证实。  相似文献   

6.
目的探讨腺苷预处理对缺血-再灌注心肌细胞膜损伤的保护作用.方法将培养5天的SD乳鼠心肌细胞随机分成4组正常组常规条件下(DMEM培养基及95% 空气+ 5% CO2 气体环境)培养50min;拟缺血/再灌注组先在缺糖缺氧条件下(无糖Eagle 培养基及95% N2+ 5% CO2 气体环境)培养30min,再恢复常规条件培养20min;拟缺血预处理组先缺糖缺氧培养5min,再复氧复糖培养5min,反复3次后按模拟缺血/再灌注组操作;腺苷预处理组用含腺苷(0.15g/L)培养液在常规条件下培养10min,再作拟缺血/再灌注组处理.扫描电镜下观察各组细胞的变化,并用胶体苯胺染色及Ridit分析法对PLA活性进行半定量.结果与正常组比较,模拟缺血/再灌注组细胞的质膜和线粒体的结构损伤严重,PLA活性显著性增强.而模拟缺血预处理和腺苷预处理组细胞质膜和线粒体损伤较轻,PLA活性显著低于拟缺血/再灌注组.结论腺苷预处理对"缺血-再灌注"损伤心肌的细胞膜有保护作用,其机制可能与腺苷直接或间接地抑制PLA活性,增强质膜的稳定性有关.  相似文献   

7.
下丘脑葡萄糖反应神经原表面ATP敏感的钾离子(KATP)通道对于血糖浓度调节发挥着重要的作用.胰岛素、长链脂肪酸、葡萄糖及其代谢物等均可以激活KATP通道,通过迷走神经而限制肝脏的葡萄糖生成,以保持血糖浓度的相对恒定.KATP通道调节异常可能导致Ⅱ型糖尿病等的发生,因此下丘脑KATP通道与糖代谢关系的研究为相关疾病的治疗带来新的希望.  相似文献   

8.
研究了甘露醇预处理对大麦(Hordeum vulgare L.)雄核发育的影响。结果发现,第一,甘露醇预处理比低温预处理和对照能明显地提高花粉存活频率,三者在接种后第8 天分别为19.0% 、8.4% 和6.6% 。第二,甘露醇预处理能提高小孢子的质量,抑制淀粉积累,有利于小孢子分裂发育,使发育进度比低温预处理和对照提早2—3 d,而对照和低温预处理的小孢子都不同程度出现淀粉积累,它对发育不利。第三,甘露醇预处理后小孢子的发育途径主要是B途径,A途径较少。大多数小孢子的细胞核为二倍体,而低温预处理大多数小孢子的染色体数目较少,为单倍体  相似文献   

9.
mitoKATP通道参与心肌缺血预处理保护作用的机制   总被引:1,自引:0,他引:1  
目的:探讨血管紧张素转换酶抑制剂(ACEI)和阈下缺血预处理联合预处理诱导的心肌保护作用中mi-toKatp通道激动后的作用机制:方法:采用离体大鼠心脏Langendorff灌流模型,观察心脏电脱耦联发生时间、细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性的改变:结果:单独使用卡托普利、或给予大鼠心脏2min缺血/10min复灌作为阈下缺血预处理,均不能改善长时间缺血/复灌引起的心脏收缩功能下降?而卡托普利和阂下缺血预处理联合使用可增高心脏收缩功能。mitoKatp通道特异性阻断剂5-HD可取消这一联合预处理的作用一联合预处理可引起缺血后电脱耦联发生时间延长,缺血心肌细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性增高;5-HD可取消此作用结论:mitoKatp通道参与了联合预处理延迟缺血引起的细胞间脱耦联和促进细胞膜离子通道稳定性维持的作用。  相似文献   

10.
人为因素是麻醉意外事故的主要原因。潜在因素和显性因素是导致人为差错的2个基本元素。优化麻醉医师的个人素质是降低人为因素风险的最佳也是最基本途径。全面提高医学知识和专业技术水平,优化心理因素,强化职业道德、增强责任心,加强科室文化建设是优化麻醉医师素质的主要方法。  相似文献   

11.
Hepatic ischemia-reperfusion (I/R) injury continues to be a fatal complication after liver surgery. Heat shock (HS) preconditioning is an effective strategy for protecting the liver from I/R injury, but its exact mechanism is still unclear. Because the activation of nuclear factor-kappaB (NF-kappaB) is an important event in the hepatic I/R-induced inflammatory response, the effect of HS preconditioning on the pathway for NF-kappaB activation was investigated. In the control group, NF-kappaB was activated 60 min after reperfusion, but this activation was suppressed in the HS group. Messenger RNA expressions of proinflammatory mediators during reperfusion were also reduced with HS preconditioning. Concomitant with NF-kappaB activation, NF-kappaB inhibitor I-kappaB proteins were degraded in the control group, but this degradation was suppressed in the HS group. This study shows that HS preconditioning protected the liver from I/R injury by suppressing the activation of NF-kappaB and the subsequent expression of proinflammatory mediators through the stabilization of I-kappaB proteins.  相似文献   

12.
It has been recently reported that release of erythropoietin could mediate the cardioprotective effects of remote renal preconditioning. However, the mechanism of erythropoietin-mediated cardioprotection in remote preconditioning is still unexplored. Therefore, the present study was designed to investigate the possible signal transduction pathway of erythropoietin-mediated cardioprotection in remote preconditioning in rats. Remote renal preconditioning was performed by four episodes of 5 min renal artery occlusion followed by 5 min reperfusion. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120 min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. Extent of myocardial infarct size and coronary flow rate was also measured. Remote renal preconditioning and erythropoietin preconditioning (5,000 IUkg(-1), i.p.) attenuated ischemia-reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of diethyldithiocarbamic acid (150 mg kg(-1) i.p.), a selective NFkB inhibitor, and glibenclamide (5 mg kg(-1) i.p.), a selective K(ATP) channel blocker, attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning. However, administration of minoxidil (1 mg kg(-1) i.v.), a selective K(ATP) channel opener, restored the attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning in diethyldithiocarbamic acid pretreated rats. These results suggest that K(ATP) channel is a downstream mediator of NFkB activation in remote preconditioning and erythropoietin preconditioning. Therefore, it may be concluded that erythropoietin preconditioning and remote renal preconditioning trigger similar signaling mechanisms for cardioprotection, i.e., NFkB activation followed by opening of K(ATP) channels.  相似文献   

13.

Background

A preconditioning stimulus can trigger a neuroprotective phenotype in the nervous system - a preconditioning nerve lesion causes a significant increase in axonal regeneration, and cerebral preconditioning protects against subsequent ischemia. We hypothesized that a preconditioning nerve lesion induces gene/protein modifications, neuronal changes, and immune activation that may affect pain sensation following subsequent nerve injury. We examined whether a preconditioning lesion affects neuropathic pain and neuroinflammation after peripheral nerve injury.

Results

We found that a preconditioning crush injury to a terminal branch of the sciatic nerve seven days before partial ligation of the sciatic nerve (PSNL; a model of neuropathic pain) induced a significant attenuation of pain hypersensitivity, particularly mechanical allodynia. A preconditioning lesion of the tibial nerve induced a long-term significant increase in paw-withdrawal threshold to mechanical stimuli and paw-withdrawal latency to thermal stimuli, after PSNL. A preconditioning lesion of the common peroneal induced a smaller but significant short-term increase in paw-withdrawal threshold to mechanical stimuli, after PSNL. There was no difference between preconditioned and unconditioned animals in neuronal damage and macrophage and T-cell infiltration into the dorsal root ganglia (DRGs) or in astrocyte and microglia activation in the spinal dorsal and ventral horns.

Conclusions

These results suggest that prior exposure to a mild nerve lesion protects against adverse effects of subsequent neuropathic injury, and that this conditioning-induced inhibition of pain hypersensitivity is not dependent on neuroinflammation in DRGs and spinal cord. Identifying the underlying mechanisms may have important implications for the understanding of neuropathic pain due to nerve injury.  相似文献   

14.
Our previous studies have demonstrated that the JNK signaling pathway plays an important role in ischemic brain injury and is mediated via glutamate receptor 6. Others studies have shown that N-methyl-d-aspartate (NMDA) receptor is involved in the neuroprotection of ischemic preconditioning. Here we examined whether ischemic preconditioning down-regulates activation of the mixed lineage kinase-JNK signaling pathway via NMDA receptor-mediated Akt1 activation. In our present results, ischemic preconditioning could not only inhibit activations of mixed lineage kinase 3, JNK1/2, and c-Jun but also enhanced activation of Akt1. In addition, both NMDA (an agonist of NMDA receptor) and preconditioning showed neuroprotective effects. In contrast, ketamine, an antagonist of NMDA receptor, prevented the above effects of preconditioning. Further studies indicated that LY294002, an inhibitor of phosphoinositide 3-kinase that is an upstream signaling protein of Akt1, could block neuroprotection of preconditioning, and KN62, an inhibitor of calmodulin-dependent protein kinase, also achieved the same effects as LY294002. Therefore, both phosphoinositide 3-kinase and calmodulin-dependent protein kinase are involved in the activation of Akt1 in ischemic tolerance. Taken together, our results indicate that preconditioning can inhibit activation of JNK signaling pathway via NMDA receptor-mediated Akt1 activation and induce neuroprotection in hippocampal CA1 region.  相似文献   

15.
Bilateral carotid artery occlusion of 10 min followed by reperfusion for 24 hr was employed in present study to produce ischaemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Short-term memory was evaluated using elevated plus maze. Inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired short-term memory, motor co-ordination and lateral push response. A preceding episode of mesenteric artery occlusion for 15 min and reperfusion of 15 min (remote mesenteric ischaemic preconditioning) prevented markedly ischaemia-reperfusion-induced cerebral injury measured in terms of infarct size, loss of short-term memory, motor coordination and lateral push response. Glibenclamide (5 mg/kg, iv) a KATP channel blocker and caffeine (7 mg/kg, iv) an adenosine receptor blocker attenuated the neuroprotective effect of remote mesenteric ischaemic preconditioning. It may be concluded that neuroprotective effect of remote mesenteric ischaemic preconditioning may be due to activation of adenosine receptors and consequent activation of KATP channels in mice.  相似文献   

16.
The present study is designed to investigate the role of Na+-H+ exchanger in the cardioprotective effect of ischaemic and angiotensin (Ang II) preconditioning. Isolated perfused rat heart was subjected to global ischaemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analysed for LDH and CK release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. Left ventricular developed pressure (LVDP) and dp/dt were recorded to evaluate myocardial contractility. Four episodes of ischaemic or Ang II preconditioning markedly reduced LDH and CK release in coronary effluent and decreased myocardial infarct size. 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a Na+-H+ exchange inhibitor, produced no marked effect on ischaemic preconditioning and Ang II preconditioning induced cardioprotection. On the other hand, EIPA administration prior to global ischaemia produced a similar reduction in myocardial injury as was noted with ischaemic preconditioning or Ang II preconditioning. On the basis of these results, it may be concluded that inhibition of Na+-H+ exchanger protects against ischaemia-reperfusion induced myocardial injury whereas activation of Na+-H+ exchanger may not mediate the cardioprotective effect of ischaemic and Ang II preconditioning.  相似文献   

17.
Objective: To explore the role and mechanism of the Kelch sample related protein-1-nuclear factor erythroid-2 related factor 2/antioxidant response element (Keap1-Nrf2/ARE) signaling pathway in protection of dexmedetomidine (DEX) preconditioning against myocardial ischemia/reperfusion injury (MIRI). Methods: A total of 70 male SD rats were randomly divided into seven equal groups (n=10): blank control (S group), ischemia/reperfusion injury (C group), DEX preconditioning (DEX group), tertiary butylhydroquinone (tBHQ) control (tBHQ group), combined tBHQ and DEX preconditioning (tBHQ+DEX group), all-trans retinoic acid (ATRA) control (ATRA group), and combined ATRA and DEX preconditioning (ATRA+DEX group). Serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) concentrations were measured by ELISA kits, and the infarct size (IS) was assessed by Evan’s blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Oxidative stress was assessed through Western blotting for expression of Keap1-Nrf2/ARE pathway members and oxidative stress markers. Results: Cardioprotection of DEX, tBHQ, and tBHQ+DEX preconditioning treatments were shown as lower concentrations of serum CK-MB and cTnI and a smaller IS following MIRI in rats compared with those of MIRI rats without pre-treatment. In addition, tBHQ+DEX preconditioning exhibited stronger myocardial protection compared with DEX preconditioning. Mechanistically, the cardioprotection offered by DEX, tBHQ, and tBHQ+DEX preconditioning treatments was mediated via exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway. Conversely, the protective effects of DEX were diminished by blocking the Keap1-Nrf2/ARE pathway with inhibitor ATRA. Conclusion: DEX preconditioning protects against MIRI by exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway, while inhibition of the Keap1-Nrf2/ARE signal transduction pathway reverses the protective effect of DEX preconditioning on MIRI.  相似文献   

18.
Huang YF  Gong KZ  Zhang ZG 《生理学报》2003,55(4):454-458
建立培养乳鼠心肌细胞的缺氧/复氧(A/R)损伤模型和缺氧预处理(APC)模型,以细胞存活率、细胞内超氧化物趋化酶(SOD)活性、丙二醛(MDA)含量、培养上清液乳酸脱氢酶(LDH)活性作为反映心肌细胞损伤的指标。采用细胞外信号调节蛋白激酶(ERK1/2)抑制剂PD98059及丝裂素活化蛋白激酶p38α/β(p38α/β)阻滞剂SB203580干预模型,并以胶内原位磷酸化法测定ERK1/2和p38活性,借以探讨ERK1/2和p38α/β在缺氧预处理保护机制中的作用。结果表明:(1)在APC组,于预处理的缺氧时相给予PD98059,可以完全消除APC的延迟保护作用;在A/R组的缺氧时相加入PD98059对细胞损伤无影响;(2)在APC组的预处理缺氧时相给予p38α/β抑制剂SB203580并不能消除APC的保护作用,而在A/R组的持续缺氧时相给予SB203580则可显著减轻缺氧对细胞的损伤;(3)ERK1/2和p38总活性测定表明,缺氧可激活ERK1/2和p38,它们的活性在缺氧后4h时达到高峰,而经过APC处理后,两者活性高峰提前于缺氧后3h时出现,且峰值显著降低。上述结果提示,预处理过程中ERK1/2的激活可能是缺氧预处理延迟保护机制中细胞信号传递的重要环节,预处理阶段p38α/β的活化不参与APC诱导的延迟保护信号传递过程,p38的过度激活可能是缺氧/复氧损伤过程中的一个致损伤参与因素,而预处理抑制随后持续缺氧阶段p38的过度激活可能是其保护机制的一个环节。  相似文献   

19.
MAPK activities, including JNK, p38, and ERK, are markedly enhanced after ischemia in vivo and chemical anoxia in vitro. The relative extent of JNK, p38, or ERK activation has been proposed to determine cell fate after injury. A mouse model was established in which prior exposure to ischemia protected against a second ischemic insult imposed 8 or 15 days later. In contrast to what was observed after 30 min of bilateral ischemia, when a second period of ischemia of 30- or 35-min duration was imposed 8 days later, there was no subsequent increase in plasma creatinine, decrease in glomerular filtration rate, or increase in fractional excretion of sodium. A shorter period of prior ischemia (15 min) was partially protective against subsequent ischemic injury 8 days later. Unilateral ischemia was also protective against a subsequent ischemic insult to the same kidney, revealing that systemic uremia is not necessary for protection. The ischemia-related activation of JNK and p38 and outer medullary vascular congestion were markedly mitigated by prior exposure to ischemia, whereas preconditioning had no effect on post-ischemic activation of ERK1/2. The phosphorylation of MKK7, MKK4, and MKK3/6, upstream activators of JNK and p38, was markedly reduced by ischemic preconditioning, whereas the post-ischemic phosphorylation of MEK1/2, the upstream activator of ERK1/2, was unaffected by preconditioning. Pre- and post-ischemic HSP-25 levels were much higher in the preconditioned kidney. In summary, post-ischemic JNK and p38 (but not ERK1/2) activation was markedly reduced in a model of kidney ischemic preconditioning that was established in the mouse. The reduction in JNK and p38 activation can be accounted for by reduced activation of upstream MAPK kinases. The post-ischemic activation patterns of MAPKs may explain the remarkable protection against ischemic injury observed in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号