首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Halobacillus trueperi accumulates glycine betaine under condition of high osmolarity. A fragment of the glycine betaine transporter betH gene was obtained from the genome of H. trueperi with degenerate primers. Through Southern blot hybridization and inverse PCR, a 5.1 kb EcoRI fragment containing the complete betH gene was identified and subsequently sequenced. The betH gene was predicted to encode a 55.2 kDa protein (504 amino acid residues) with 12 transmembrane regions. BetH showed 56% identity to the OpuD of Bacillus subtilis which belongs to the betaine/carnitine/choline transporter (BCCT) family. Its putative promoter region was highly homologous to sigmaB-dependent promoter of B. subtilis. A 2.6 kb fragment containing the betH gene was cloned into pUC18 and transformed into the Escherichia coli MKH13. The accumulation of glycine betaine in transformed E. coli MKH13 bacteria was confirmed using 13C nuclear magnetic resonance spectroscopy.  相似文献   

2.
喜盐芽孢杆菌(Halobacillus)D8是一株产生芽孢的革兰氏阳性中度嗜盐菌,能够耐受2 5 %NaCl。以其总DNASau3AI部分酶切的片段为供体、pUC18为载体,构建了该菌株的基因文库,共获得约90 0 0个重组质粒。通过菌落原位杂交、菌落PCR检测及DNA序列测定,从该文库中筛选到含有完整的甘氨酸甜菜碱次级转运系统基因的重组质粒,将此基因命名为betH基因。序列分析发现,betH基因的大小为15 15bp ,编码由5 0 5个氨基酸组成的BetH蛋白,分子量为5 6 1kD。经蛋白疏水性分析,推测为含有12个跨膜区的跨膜蛋白,与Oceanobacillusiheyensis甘氨酸甜菜碱转运蛋白、枯草芽孢杆菌(Bacillussubtilis)OpuD、楚氏喜盐芽孢杆菌(Halobacillustrueperi)BetH、单核细胞增生利斯特氏菌(Listeriamonocytogenes)BetL、嗜盐海球菌(Marinococcushalophilus)BetM和耐盐芽孢杆菌(Bacillushalodurans)甘氨酸甜菜碱转运蛋白的氨基酸同源性分别为6 4 %、5 1%、4 9%、4 8%、4 3%和4 4 %。  相似文献   

3.
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.  相似文献   

4.
We identified an operon in Listeria monocytogenes EGD with high levels of sequence similarity to the operons encoding the OpuC and OpuB compatible solute transporters from Bacillus subtilis, which are members of the ATP binding cassette (ABC) substrate binding protein-dependent transporter superfamily. The operon, designated opuC, consists of four genes which are predicted to encode an ATP binding protein (OpuCA), an extracellular substrate binding protein (OpuCC), and two membrane-associated proteins presumed to form the permease (OpuCB and OpuCD). The operon is preceded by a potential SigB-dependent promoter. An opuC-defective mutant was generated by the insertional inactivation of the opuCA gene. The mutant was impaired for growth at high osmolarity in brain heart infusion broth and failed to grow in a defined medium. Supplementation of the defined medium with peptone restored the growth of the mutant in this medium. The mutant was found to accumulate the compatible solutes glycine betaine and choline to same extent as the parent strain but was defective in the uptake of L-carnitine. We conclude that the opuC operon in L. monocytogenes encodes an ABC compatible solute transporter which is capable of transporting L-carnitine and which plays an important role in osmoregulation in this pathogen.  相似文献   

5.
6.
The ability of the gram-positive, food-borne pathogen Listeria monocytogenes to tolerate environments of elevated osmolarity and reduced temperature is due in part to the transport and accumulation of the osmolyte glycine betaine. Previously we showed that glycine betaine transport was the result of Na(+)-glycine betaine symport. In this report, we identify a second glycine betaine transporter from L. monocytogenes which is osmotically activated but does not require a high concentration of Na(+) for activity. By using a pool of Tn917-LTV3 mutants, a salt- and chill-sensitive mutant which was also found to be impaired in its ability to transport glycine betaine was isolated. DNA sequence analysis of the region flanking the site of transposon insertion revealed three open reading frames homologous to opuA from Bacillus subtilis and proU from Escherichia coli, both of which encode glycine betaine transport systems that belong to the superfamily of ATP-dependent transporters. The three open reading frames are closely spaced, suggesting that they are arranged in an operon. Moreover, a region upstream from the first reading frame was found to be homologous to the promoter regions of both opuA and proU. One unusual feature not shared with these other two systems is that the start codons for two of the open reading frames in L. monocytogenes appear to be TTG. That glycine betaine uptake is nearly eliminated in the mutant strain when it is assayed in the absence of Na(+) is an indication that only the ATP-dependent transporter and the Na(+)-glycine betaine symporter occur in L. monocytogenes.  相似文献   

7.
Biosynthesis of the compatible solute glycine betaine in Bacillus subtilis confers a considerable degree of osmotic tolerance and proceeds via a two-step oxidation process of choline, with glycine betaine aldehyde as the intermediate. We have exploited the sensitivity of B. subtilis strains defective in glycine betaine production against glycine betaine aldehyde to select for mutants resistant to this toxic intermediate. These strains were also defective in choline uptake, and genetic analysis proved that two mutations affecting different genetic loci (opuB and opuC) were required for these phenotypes. Molecular analysis allowed us to demonstrate that the opuB and opuC operons each encode a binding protein-dependent ABC transport system that consists of four components. The presumed binding proteins of both ABC transporters were shown to be lipoproteins. Kinetic analysis of [14C]-choline uptake via OpuB (K(m) = 1 microM; Vmax = 21 nmol min-1 mg-1 protein) and OpuC (K(m) = 38 microM; Vmax = 75 nmol min-1 mg-1 protein) revealed that each of these ABC transporters exhibits high affinity and substantial transport capacity. Western blotting experiments with a polyclonal antiserum cross-reacting with the presumed substrate-binding proteins from both the OpuB and OpuC transporter suggested that the expression of the opuB and opuC operons is regulated in response to increasing osmolality of the growth medium. Primer extension analysis confirmed the osmotic control of opuB and allowed the identification of the promoter of this operon. The opuB and opuC operons are located close to each other on the B. subtilis chromosome, and their high sequence identity strongly suggests that these systems have evolved from a duplication event of a primordial gene cluster. Despite the close relatedness of OpuB and OpuC, these systems exhibit a striking difference in substrate specificity for osmoprotectants that would not have been predicted readily for such closely related ABC transporters.  相似文献   

8.
To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.  相似文献   

9.
In response to osmotic stress, the halophilic, Gram-positive bacterium Marinococcus halophilus accumulates compatible solutes either by de novo synthesis or by uptake from the medium. To characterize transport systems responsible for the uptake of compatible solutes, a plasmid-encoded gene bank of M. halophilus was transferred into the transport-deficient strain Escherichia coli MKH13, and two genes were cloned by functional complementation required for ectoine and glycine betaine transport. The ectoine transporter is encoded by an open reading frame of 1,578 bp named ectM. The gene ectM encodes a putative hydrophobic, 525-residue protein, which shares significant identity to betaine-carnetine-choline transporters (BCCTs). The transporter responsible for the uptake of glycine betaine in M. halophilus is encoded by an open reading frame of 1,482 bp called betM. The potential, hydrophobic BetM protein consists of 493 amino acid residues and belongs, like EctM, to the BCCT family. The affinity of whole cells of E. coli MKH13 for ectoine (Ks=1.6 M) and betaine (Ks=21.8 M) was determined, suggesting that EctM and BetM exhibit a high affinity for their substrates. An elevation of the salinity in the medium resulted in an increased uptake of ectoine via EctM and glycine betaine via BetM in E. coli MKH13 cells, demonstrating that both systems are osmoregulated.Communicated by W.D. Grant  相似文献   

10.
R M Kappes  B Kempf    E Bremer 《Journal of bacteriology》1996,178(17):5071-5079
The accumulation of the osmoprotectant glycine betaine from exogenous sources provides a high degree of osmotic tolerance to Bacillus subtilis. We have identified, through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, a new glycine betaine transport system from B. subtilis. The DNA sequence of a 2,310-bp segment of the cloned region revealed a single gene (opuD) whose product (OpuD) was essential for glycine betaine uptake and osmoprotection in E. coli. The opuD gene encodes a hydrophobic 56.13-kDa protein (512 amino acid residues). OpuD shows a significant degree of sequence identity to the choline transporter BetT and the carnitine transporter CaiT from E. coli and a BetT-like protein from Haemophilus influenzae. These membrane proteins form a family of transporters involved in the uptake of trimethylammonium compounds. The OpuD-mediated glycine betaine transport activity in B. subtilis is controlled by the environmental osmolarity. High osmolarity stimulates de novo synthesis of OpuD and activates preexisting OpuD proteins to achieve maximal glycine betaine uptake activity. An opuD mutant was constructed by marker replacement, and the OpuD-mediated glycine betaine uptake activity was compared with that of the previously identified multicomponent OpuA and OpuC (ProU) glycine betaine uptake systems. In addition, a set of mutants was constructed, each of which synthesized only one of the three glycine betaine uptake systems. These mutants were used to determine the kinetic parameters for glycine betaine transport through OpuA, OpuC, and OpuD. Each of these uptake systems shows high substrate affinity, with Km values in the low micromolar range, which should allow B. subtilis to efficiently acquire the osmoprotectant from the environment. The systems differed in their contribution to the overall glycine betaine accumulation and osmoprotection. A triple opuA, opuC, and opuD mutant strain was isolated, and it showed no glycine betaine uptake activity, demonstrating that three transport systems for this osmoprotectant operate in B. subtilis.  相似文献   

11.
Through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, we identified a single-component glycine betaine transporter from Tetragenococcus halophila, a moderate halophilic lactic acid bacterium. DNA sequence analysis characterized the ButA protein as a member of the betaine choline carnitine transporter (BCCT) family, that includes a variety of previously characterized compatible solute transporters such as OpuD from Bacillus subtilis, EctP and BetP from Corynebacterium glutamicum, and BetL from Listeria monocytogenes. When expressed in the heterologous host E. coli, the permease is specific for glycine betaine and does not transport the other osmoprotectants previously described for T. halophila (i.e. carnitine, choline, dimethylsulfonioacetate, dimethylsulfoniopropionate, and ectoine). In E. coli, statement of ButA is mainly constitutive and maximal uptake activity may result from a weak osmotic induction. This is the first study demonstrating a role for a permease in osmoregulation, and GB uptake, of a lactic acid bacterium.Received: 19 November 2002/Accepted: 19 December 2002  相似文献   

12.
The trimethylammonium compound glycine betaine (N,N, N-trimethylglycine) can be accumulated to high intracellular concentrations, conferring enhanced osmo- and cryotolerance upon Listeria monocytogenes. We report the identification of betL, a gene encoding a glycine betaine uptake system in L. monocytogenes, isolated by functional complementation of the betaine uptake mutant Escherichia coli MKH13. The betL gene is preceded by a consensus sigmaB-dependent promoter and is predicted to encode a 55-kDa protein (507 amino acid residues) with 12 transmembrane regions. BetL exhibits significant sequence homologies to other glycine betaine transporters, including OpuD from Bacillus subtilis (57% identity) and BetP from Corynebacterium glutamicum (41% identity). These high-affinity secondary transporters form a subset of the trimethylammonium transporter family specific for glycine betaine, whose substrates possess a fully methylated quaternary ammonium group. The observed Km value of 7.9 microM for glycine betaine uptake after heterologous expression of betL in E. coli MKH13 is consistent with values obtained for L. monocytogenes in other studies. In addition, a betL knockout mutant which is significantly affected in its ability to accumulate glycine betaine in the presence or absence of NaCl has been constructed in L. monocytogenes. This mutant is also unable to withstand concentrations of salt as high as can the BetL+ parent, signifying the role of the transporter in Listeria osmotolerance.  相似文献   

13.
14.
15.
The nucleotide sequence of Bacillus stearothermophilus SE-589 DNA fragment including an operon for the site-specific nicking-modification (NM) system with a gene for BstSEI nicking endonuclease (nickase) has been determined. An analysis of the regions adjacent to the nickase gene has revealed two genes encoding DNA methyltransferases belonging to different classes. Three genes that form the system operon are separated by short open reading frames (ORFs). An analysis of these ORFs has shown that the polypeptides they encode are homologous to different parts of BstSEI nickase, NatB protein, and arginase. A difference in the GC content of the beginning and ending regions of the cloned DNA fragment and the presence of short ORFs similar to genes for known proteins indicate that the NM.BstSEI system operon has probably evolved by horizontal DNA transfer.  相似文献   

16.
BceA and bceB encode a nucleotide-binding domain (NBD) and membrane-spanning domain (MSD) subunit, respectively, of an ATP-binding cassette (ABC) transporter in Bacillus subtilis. Disruption of these genes resulted in hypersensitivity to bacitracin, a peptide antibiotic that is non-ribosomally synthesized in some strains of Bacillus. Northern hybridization analyses showed that expression of the bceAB operon is induced by bacitracin present in the growth medium. The bceRS genes encoding a two-component regulatory system are located immediately upstream of bceAB. Deletion analyses of the bceAB promoter together with DNase I footprinting experiments revealed that a sensor kinase, BceS, responds to extracellular bacitracin either directly or indirectly and transmits a signal to a cognate response regulator, BceR. The regulator binds directly to the upstream region of the bceAB promoter and upregulates the expression of bceAB genes. The bcrC gene product is additionally involved in bacitracin resistance. The expression of bcrC is dependent on the ECF sigma factors, sigmaM and sigmaX, but not on the BceRS two-component system. In view of these results, possible roles of BceA, BceB and BcrC in bacitracin resistance of B. subtilis 168 are discussed.  相似文献   

17.
The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi.  相似文献   

18.
Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in A. baylyi. The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of Acinetobacter species to osmotic stress.  相似文献   

19.
Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.  相似文献   

20.
The ability of the gram-positive, food-borne pathogen Listeria monocytogenes to tolerate environments of elevated osmolarity and reduced temperature is due in part to the transport and accumulation of the osmolyte glycine betaine. Previously we showed that glycine betaine transport was the result of Na+-glycine betaine symport. In this report, we identify a second glycine betaine transporter from L. monocytogenes which is osmotically activated but does not require a high concentration of Na+ for activity. By using a pool of Tn917-LTV3 mutants, a salt- and chill-sensitive mutant which was also found to be impaired in its ability to transport glycine betaine was isolated. DNA sequence analysis of the region flanking the site of transposon insertion revealed three open reading frames homologous to opuA from Bacillus subtilis and proU from Escherichia coli, both of which encode glycine betaine transport systems that belong to the superfamily of ATP-dependent transporters. The three open reading frames are closely spaced, suggesting that they are arranged in an operon. Moreover, a region upstream from the first reading frame was found to be homologous to the promoter regions of both opuA and proU. One unusual feature not shared with these other two systems is that the start codons for two of the open reading frames in L. monocytogenes appear to be TTG. That glycine betaine uptake is nearly eliminated in the mutant strain when it is assayed in the absence of Na+ is an indication that only the ATP-dependent transporter and the Na+-glycine betaine symporter occur in L. monocytogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号