首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Skull length is the measurement most commonly used as a standard against which other aspects of cranial morphology are compared to derive an index of relative size or proportions. However, skull length is composed of two different functional components, facial skull and cerebral skull, which vary independently and have different scaling relationships with body size. An analysis of carnivore skull shape with measurements standardized against basicranium length produced very different results than an analysis using skull length as the standard. For example, expressions of relative size of cranial measurements were reduced by 13% in mustelids and increased by 20% in canids, reflecting removal of jaw length (short in mustelids and long in canids) from the comparative standard (basicranial axis length). Cranial measurements scale with higher allometric exponents against basicranial axis length than against skull length.  相似文献   

3.
Summary The genetical control of six characters, which were taken as jointly reflecting the overall shape of the plant, was analysed using four true-breeding lines of Nicotiana rustica. F1 F2 and first backcross generations were raised from all of the possible pairwise combinations between the lines. The particular relationships between the lines provided a basis for the analysis which was an extension of the normal model fitting procedures described by Mather and Jinks (1971).The first step in the analysis was to test whether the allelic differences present between the inbred lines p1 and P5 had been maintained in the two lines B2 and B35, derived from an earlier cross between the former. If the allelic differences between p1 and P5 were present between B2 and B35, it was possible to proceed straight-forwardly by fitting a model consisting of m, two symmetrical [d]'s and the relevant non-additive parameters. If B2 and B35 were homozygous for the same alleles at loci by which p1 and P5 differed, in other words if significant asymmetry in the gene distributions was present, the model had to be extended to cover the effects of such genes.All six characters investigated were shown to be subject to genetical variation. From the composition of the genetical models that were necessary to account for the observations from each of the characters, it was inferred that they should be amenable to at least partially independent adjustment by selection.  相似文献   

4.
5.
A new method for quantifying cranial and cerebral shape and asymmetry fits symmetric superquadric geometric models to three-dimensional coordinate measurements. Asymmetry is quantified as radial residuals of the surface data points from their best-fit superquadric models. Twenty human crania, 10 magnetic resonance imaging (MRI) exocranial surfaces, and 10 corresponding MRI cerebral surfaces as well as two infant head casts were digitized and modeled using superquadrics. Superquadric parameters have simple geometric interpretation, are very reproducible, and demonstrated statistically significant differences between crania of Amerindian ancestry and MRI exocranial surfaces of European ancestry used in this study. Superquadric models demonstrated strong congruence between MRI exocranial and cerebral surfaces. Typical asymmetry was 1-5 mm. Lastly, polar contour plots of radial residuals for head casts before and after orthotic cranioplasty demonstrated the efficacy of using superquadrics to quantify positional plagiocephaly and synostosis of infant crania.  相似文献   

6.
7.
8.
Following the elucidation by geneticists of the nature of minor skeletal variants in the mouse, anthropologists have stressed the potential of these traits for tracing the affinities and movements of extinct human populations. Earlier Sullivan observed that discrete traits could be particularly valuable where artificial cranial deformation limits the use of craniometry. Twenty-eight minor variants were studied in bifronto-occipitally deformed and undeformed skulls of a sample of 78 from a single Hopewell mound. The pattern of frequency differences between deformed and undeformed with respect to traits at the back of the vault and in the frontal region, interpreted in developmental terms, reveals a hypostotic effect in these regions in the deformed skull; while, in contrast, traits of the lateral vault, facial skeleton and cranial base point to a general hyperostotic effect in these regions. Each of three emissaria tends to be more constant in the deformed. That minor cranial variants manifest a plastic response to this type of environmentally-imposed stress is consistent with the nature of such variants as elucidated by genetics research in mice. The findings suggest that deformed crania should be excluded from population studies in which genetic divergence between groups is estimated in terms of cranial trait frequencies.  相似文献   

9.
A method for the differentiation of sutural patterns of the human cranial vault is introduced. Three criteria of differentiation are considered, one for size and two for shape: 1) maximal shape extension; 2) basic configuration; 3) secondary protrusion. The method is illustrated here for the coronal and lambdoid sutures of 70 recent Italian skulls (35 adult males and 35 adult females). Differences between coronal and lambdoid sutural size and shape can be detected analytically; for example, the coronal suture commonly shows lesser degrees of shape extension, a simpler basic configuration, and an absence of secondary protrusion. Heterogeneity within each suture, as well as a relationship among corresponding sections and between the three criteria adopted, have been also observed; symmetry predominates for both the sutures, and sexual differences are slight.  相似文献   

10.
11.
The taxonomic status of Homo erectus sensu lato has been a source of debate since the early 1980s, when a series of publications suggested that the early African fossils may represent a separate species, H. ergaster. To gain further resolution regarding this debate, 3D geometric morphometric data were used to quantify overall shape variation in the cranial vault within H. erectus using a new metric, the sum of squared pairwise Procrustes distances (SSD). Bootstrapping methods were used to compare the H. erectus SSD to a broad range of human and nonhuman primate samples in order to ascertain whether variation in H. erectus most clearly resembles that seen in one or more species. The reference taxa included relevant phylogenetic, ecological, and temporal analogs including humans, apes, and both extant and extinct papionin monkeys. The mean cranial shapes of different temporogeographic subsets of H. erectus fossils were then tested for significance using exact randomization tests and compared to the distances between regional groups of modern humans and subspecies/species of the ape and papionin monkey taxa. To gauge the influence of sexual dimorphism on levels of variation, comparisons were also made between the mean cranial shapes of single-sex samples for the reference taxa. Results indicate that variation in H. erectus is most comparable to single species of papionin monkeys and the genus Pan, which included two species. However, H. erectus encompasses a limited range of variation given its extensive geographic and temporal range, leading to the conclusion that only one species should be recognized. In addition, there are significant differences between the African/Georgian and Asian H. erectus samples, but not between H. ergaster (Georgia+Africa, excluding OH 9 and Daka) and H. erectus sensu stricto. This finding is in line with expectations for intraspecific variation in a long-lived species with a wide, but probably discontinuous, geographic distribution.  相似文献   

12.
We suggest structure characterization of macromolecular assemblies by combining assembly shape determined by electron cyromicroscopy with information about subunit proximity determined by affinity purification. To achieve this aim, structure characterization is expressed as a problem in satisfaction of spatial restraints that (1) represents subunits as spheres, (2) encodes information about the subunit excluded volume, assembly shape, and pulldowns in a scoring function, and (3) finds subunit configurations that satisfy the input restraints by an optimization of the scoring function. Testing of the approach with model systems suggests its feasibility.  相似文献   

13.
14.
The purpose of this study was to determine the best scaling method to account for the effects of body size on measurements of overall cardiac function and subsequently the interpretation of data based on cardiac power output (CPO). CPO was measured at rest (CPO(rest)) and at maximal exercise (CPO(max)) on 88 and 103 healthy but untrained men and women, respectively, over the age range of 20-70 yr. Cardiac reserve (CR) was calculated as CPO(max) - CPO(rest). CPO(rest), CPO(max), and CR were all significantly related to body mass (BM), body surface area (BSA), and lean body mass (LBM). The linear regression model failed to completely normalize these measurements. In contrast, the allometric model produced size-independent values of CPO. Furthermore, all the assumptions associated with the allometric model were achieved. For CPO(rest), mean body size exponents were BM(0.33), BSA(0.60), and LBM(0.47). For CPO(max), the exponents were BM(0.41), BSA(0.81), and LBM(0.71). For CR, mean body size exponents were BM(0.44), BSA(0.87), and LBM(0.79). LBM was identified (from the root-mean-squares errors of the separate regression models) as the best physiological variable (based on its high metabolic activity) to be scaled in the allometric model. Scaling of CPO to LBM(b) (where b is the scaling exponent) dramatically reduced the between-gender differences with only a 7% difference in CPO(rest) and CPO(max) values. In addition, the gender difference in CR was completely removed. To avoid erroneous interpretations and conclusions being made when comparing data between men and women of different ages, the allometric scaling of CPO to LBM(b) would seem crucial.  相似文献   

15.
A long-standing controversy exists about the comparative utility of metric and non-metric traits as biological indicators in population studies. We hypothesize that the underlying scale which determines the presence or absence of a cranial non-metric trait is an expression of general and/or local size variation in the cranium. Therefore metric and non-metric traits will share a common developmental determination. The hypothesis implies that the underlying scale of a non-metric trait will be correlated with measures of cranial size and shape. Forty-eight cranial metric and twenty-five cranial non-metric traits were scored on the left side of adult male crania from four North American Indian populations. New threshold traits were generated for each non-metric trait by dichotomizing discriminant scores produced by discriminant function analysis. The discriminant analysis was performed using metric traits to discriminate between groups formed by non-metric trait presence or absence. Every non-metric trait tested was significantly correlated with its threshold trait in at least one population. The correlations were of moderate to high levels depending on the trait and population sample studied. This implies that metric and non-metric traits share a moderate to high degree of developmental determination. The cause of these correlations may lie in the common effects that growth and development of the soft tissue and functional spaces of the cranium exert on both metric and non-metric traits.  相似文献   

16.
The paper reports the results of numerical calculations of the pKa’s of the ionizable groups and the electrostatic interactions between calmodulin lobes in three different states of calmodulin: calcium-free, peptide-free; calcium-loaded, peptide-free; and calcium-loaded, peptide-bound. NMR and X-ray studies revealed that in these states the overall structure of calmodulin adopts various conformations referred as: disordered semi-compact, extended and compact conformations, respectively. In addition, a new X-ray structure was recently reported (Structure, 2003, 11, 1303) showing that calcium-loaded, peptide-free calmodulin can also adopt a compact conformation in addition to the well known extended conformation. The calculated energy changes of calcium-loaded, peptide-free calmodulin along the pathway connecting these two conformations provide a possible explanation for this structural plasticity. The effect of pH and organic compounds in the solution phase on the preference of calmodulin to adopt compact or extended conformations may be thus rationalized. Analysis of the contribution of the ionization changes to the energy of association of calmodulin lobes suggested that the formation of the compact forms requires protonation of several acidic residues. However, two different protonation scenarios are revealed: a protonation due to internal lobe organization and thus independent of the lobes association, and a protonation induced by the lobes association resulting to a proton uptake. In addition, the role of the individual residues on the energy of association of calmodulin lobes is calculated in two compact conformations (peptide-free and peptide-bound) and is shown that a set of residues always plays a dominant role in inter-domain interactions.  相似文献   

17.
Morphological disparity arises through changes in the ontogeny of structures; however, a major challenge of studying the effect of development on shape is the difficulty of collecting time series of data for large numbers of taxa. A proxy for developmental series proposed here is the age at sexual maturity, a developmental milestone potentially tied to the development of structures with documented use in intrasexual competition, such as cranial appendages in Artiodactyla. This study tested the hypothesis that ruminant cranial appendage shape and size correlate with onset of sexual maturity, predicting that late sexual maturity would correlate with larger, more complicated cranial appendages. Published data for cranial appendage shape and size in extant taxa were tested for correlations with sexual maturity using linear mixed‐effect models and phylogenetic generalized least‐squares analyses. Ancestral state reconstructions were used to assess correlated variables for developmental shifts indicative of heterochrony. These tests showed that phylogeny and body mass were the most common predictors of cranial appendage shape and sexual maturity was only significant as an interaction with body mass. Nevertheless, using developmental milestones as proxies for ontogeny may still be valuable in targeting future research to better understand the role of development in the evolution of disparate morphology when correlations exist between the milestone and shape.  相似文献   

18.
An appreciation of ontogenetic changes to the cranial base is important for understanding the evolution of modern human skull form. Using geometric morphometric techniques, this study explores midline shape variations of the basicranium and midface during human prenatal ontogeny. In particular, the analysis sets out to explore shape variations associated with endochondral ossification and to reassess shape variations previously observed on the basis of angular measures.Fifty-four formalin-preserved human fetuses were imaged using high-resolution MRI. Coordinates for 10 landmarks defining the midline basicranium and midface were acquired and areas of ossification in the midline basioccipital, basisphenoid, and presphenoid cartilages were measured as percentages of overall cranial base area. The results show shape variations with increasing fetal size that are consistent with cranial base retroflexion, anterior facial projection and dorsal facial rotation. These growth variations are centered on the midsphenoid area and are associated with disproportionate variations of sphenoid height and length. Small but significant correlations were observed between ossification of the presphenoid cartilage and components of shape that described, among other variations, sphenoid shortening. While ossification cannot be directly linked with the shape variations observed, it seems likely that bone formation plays a role in modulating the influence of other factors on the fetal cranial base.  相似文献   

19.
Midsagittal profiles of crania referred to different taxa of the genus Homo have been analyzed by geometric morphometric techniques. Comparisons between single specimens using the thin-plate-spline function suggest a generalized reduction of the lower face, associated with antero-posterior development of the braincase occurring (possibly in parallel evolution) along distinct human lineages. Furthermore, Neandertals display a projection of the midface, and modern humans show a derived globularity of the vault associated with midsagittal parietal bulging. Principal Component Analysis demonstrates a bimodal pattern of variation, which describes an "archaic" pole (rather heterogeneous in terms of taxonomy) clearly distinguishable from the modern one. The first two principal components - that explain together 80% of the total variance in shape - involve respectively fronto-parietal expansion and midfacial prognathism. These results contribute to identify different structural patterns in human evolution, supporting discontinuity rather than continuity of cranial shape among different taxa of the genus Homo, especially when considering the differences between Neandertals and early modern humans.  相似文献   

20.
In 1943, Weidenreich described the squamosal suture of Homo erectus as long, low, and simian in character and suggested that this morphology was dependent upon the correlation between the size of the calvarium and the face. Many researchers now consider this character to be diagnostic of H. erectus. The relationship between cranial size and shape and temporal squama morphology, however, is unclear, and several authors have called for detailed measurements of squamosal variation to be collected before any conclusions are drawn regarding the nature of the morphology observed in H. erectus. Thirteen fossil and extant taxa were examined to address two questions: 1) Are size and shape of the temporal squama correlated with cranial vault morphology? and 2) Is the H. erectus condition plesiomorphic? To answer these questions, measurements were collected and indices were calculated for squamosal suture height, length, and area in relation to metric variables describing cranial size and shape. A two‐dimensional morphometric study was also completed using High Resolution‐Polynomial Curve Fitting (HR‐PCF) to investigate correlations between curvature of the squamosal suture and curvature of the cranial vault. Results of both analyses indicate that squamosal suture form is related to cranial size and shape. Furthermore, the plesiomorphic condition of the squamosal suture for hominins was identified as high and moderately arched; this condition is retained in H. erectus and is distinct from the great ape condition. It is suggested that this similarity is the result of increased cranial length without a corresponding increase in cranial height. Am J Phys Anthropol, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号