首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysophospholipases play essential roles in keeping their multi-functional substrates, the lysophospholipids, at safe levels. Recently, a 25 kDa human lysophospholipase A (hLysoPLA I) that is highly conserved among rat, mouse, human and rabbit has been cloned, expressed and characterized and appears to hydrolyze only lysophospholipids among the various lipid substrates. Interestingly, this enzyme also displays acyl-protein thioesterase activity towards a G protein alpha subunit. To target the subcellular location of this hLysoPLA I, we have carried out immunocytochemical studies and report here that hLysoPLA I appears to be associated with the endoplasmic reticulum (ER) and nuclear envelope in human amnionic WISH cells and not the plasma membrane. In addition, we found that the hLysoPLA I can be up-regulated by phorbol 12-myristate 13-acetate (PMA) stimulation, a process in which phospholipase A(2) is activated and lysophospholipids are generated in WISH cells. Furthermore, the PMA-induced hLysoPLA I expression can be blocked by the protein kinase C (PKC) inhibitor G?6976. The regulated expression of the LysoPLA/acyl-protein thioesterase by PKC may have important implications for signal transduction processes.  相似文献   

2.
Gijsbers R  Aoki J  Arai H  Bollen M 《FEBS letters》2003,538(1-3):60-64
Autotaxin (NPP2) is a tumor cell motility-stimulating factor that displays both a nucleotide pyrophosphatase/phosphodiesterase activity and a recently described lysophospholipase D activity. The hydrolysis of nucleotides is a metal-assisted reaction that occurs via a nucleotidylated threonine in the catalytic site. We show here that the catalytic site threonine and the metal-coordinating residues are also essential for the hydrolysis of lysophospholipids. In comparing the substrate specificity of NPP2 and the closely related NPP1 and NPP3, we found that only NPP2 displayed a lysophospholipase D activity, whereas NPP1 and NPP3 had a much higher nucleotide pyrophosphatase activity.  相似文献   

3.
Two lysophospholipase activities (designated I and II) were identified in the macrophage-like cell line P388D1. Lysophospholipase I was purified (8,500-fold) to homogeneity by DEAE-Sephacel, Sephadex G-75, Blue-Sepharose, and chromatofocusing chromatography. Lysophospholipase II was separated from the lysophospholipase I in the Blue-Sepharose step. The apparent molecular mass of lysophospholipase I and II are 27,000 and 28,000 daltons, respectively, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their pI values were 4.4 and 6.1 respectively, as determined by isoelectric focusing. Lysophospholipase I exhibited a broad pH optimum between 7.5-9.0. The double-reciprocal plot of the substrate dependence curve of the purified lysophospholipase I showed a break around the critical micelle concentration of the substrate (1-palmitoyl-sn-glycerol-3-phosphorylcholine). The apparent Km, determined from substrate concentrations above 10 microM was 22 microM, and the apparent Vmax was 1.3 mumol min-1mg-1. The purified enzyme did not have phospholipase A1, phospholipase A2, acyltransferase, or lysophospholipase-transacylase activity. No activity was detected toward triacylglycerol, diacylglycerol, p-nitrophenol acetate, p-nitrophenol palmitate, or cholesterol ester. The enzyme did, however, hydrolyze monoacylglycerol although at a rate 20-fold less than lysophospholipid, 0.06 mumol min-1mg-1. The lysophospholipase I was inhibited by fatty acids but not by glycerol-3-phosphorylcholine, glycerol-3-phosphorylethanolamine, or glyc-fjerol-3-phosphorylserine. A synthetic manoalide analogue 3(cis,cis,-7,10)hexadecadienyl-4-hydroxy-2-butenolide inhibited the enzyme with half-inhibition (IC50) at about 160 microM. Triton X-100 decreased the enzymatic activity, although this apparent inhibition can be explained by a "surface dilution" effect. The pure lysophospholipase I was stable for at least 5 months at -20 degrees C in the presence of glycerol and beta-mercaptoethanol. Lysophospholipid also demonstrated a protective effect during the later stage of purification.  相似文献   

4.
The first step in the production of eicosanoids and platelet-activating factor is the hydrolysis of arachidonic acid from membrane phospholipid by phospholipase A2. We previously purified from the macrophage cell line RAW 264.7 an intracellular phospholipase A2 that preferentially hydrolyzes sn-2-arachidonic acid. The enzyme exhibits a molecular mass of 100 kDa and an isoelectric point of 5.6. When assayed for other activities, the phospholipase A2 was found to exhibit lysophospholipase activity against palmitoyllysoglycerophosphocholine, and both activities copurified to a single band on silver-stained sodium dodecyl sulfate-polyacrylamide gels. An antibody against the macrophage enzyme was found to quantitatively immunoprecipitate both phospholipase A2 and lysophospholipase activities from a crude cytosolic fraction. When the immunoprecipitated material was analyzed on immunoblots, a single band at 100 kDa was evident, further suggesting that a single protein possessed both enzyme activities. When assayed as a function of palmitoyllysoglycerophosphocholine concentration and plotted as a double-reciprocal plot, two different slopes were apparent, corresponding to concentrations above and below the critical micellar concentration (7 microM) of the substrate. Above the critical micellar concentration, lysophospholipase exhibited an apparent Km of 25 microM and a Vmax of 1.5 mumol/min/mg. Calcium was not required for lysophospholipase activity, in contrast to phospholipase A2 activity. The enzyme, when assayed as either a phospholipase A2 or lysophospholipase, exhibited nonlinear kinetics beyond 1-2 min despite low substrate conversion. Readdition to more substrate after the activity plateaued did not result in further enzyme activity, ruling out substrate depletion. Readdition of enzyme, however, resulted in another burst of enzyme activity. The results are not consistent with product inhibition, but suggest that the enzyme may be subject to inactivation during catalysis.  相似文献   

5.
Anion exchange chromatography of WEHI 265.1 cell homogenates resolved the lysophospholipase activity into three peaks, when assayed using lysophosphatidylcholine as a substrate. Peaks 1 and 2 were purified by sequential hydrophobic interaction and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified peaks 1 and 2 indicated homogeneous proteins with apparent masses of 28 and 27 kDa, respectively. Peak 3 lysophospholipases was partially purified by hydrophobic, hydroxyapatite and gel filtration chromatography. Peak 3 lysophospholipase also had calcium-dependent phospholipase A2 activity, which further co-purified with the lysophospholipase activity. The three lysophospholipases were characterized with respect to substrate specificity, additional enzymatic activities and the effects of lipids, metal ions and other compounds on enzymatic activity. Peaks 1, 2 and 3 hydrolyzed lysophosphatidylcholine most readily, but lysophosphatidylethanolamine also served as substrate for each enzyme. Furthermore, all three enzymes hydrolyzed platelet activating factor and acetylated lysophosphatidylcholine. Each lysophospholipase was inhibited by free fatty acids and by palmitoyl carnitine, although the relative sensitivities to these agents differed among the enzymes. The lysophospholipase activities of peaks 1 and 2, but not peak 3, were inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate and N-ethylmaleimide. Although they had similar masses, the amino acid compositions of peaks 1 and 2 differed, indicating that these are distinct proteins rather than posttranslational modifications of the same gene product.  相似文献   

6.
Lysophospholipase of Escherichia coli.   总被引:4,自引:0,他引:4  
A lysophospholipase from Escherichia coli cells was purified about 1,500-fold to near homogeneity by extraction with Tris-HCl buffer, streptomycin treatment, (NH4)2SO4 fractionation, column chromatographies on Sephadex G-200, DEAE-cellulose and hydroxylapatite-cellulose, and polyacrylamide gel electrophoresis. The final preparation had a molecular weight of 39,500 plus or minus 500. The enzyme hydrolyzes 1-acylglycerylphosphorylethanolamine, 2-acylglycerylphosphorylethanoiamine, and 1-acylglycerylphosphorylglycerol, but does not attack diacylphospholipids with long chain fatty acids, such as phosphatidylethanolamine and phosphatidylglycerol. The enzyme does not show any esterase activity against p-nitrophenyl acetate or palmitate. Although it does not hydrolyze triacylglycerol or diacylglycerol, it hydrolyzes 1-acylglycerol at almost the same rate as 1-acyl-sn-glycerol-3-phosphorylethanolamine. Results indicated that the acyl-hydrolyzing activities toward monoacyl-glycerylphosphorylethanolamine and monoacylglycerol belong to the same enzyme. In general, acidic and nonionic detergents inhibited the reaction. This lysophospholipase preparation hydrolyzes the monomolecular and micellar forms of lysophospholipids as well as of monoacylglycerol. The monomolecular and micellar forms of Triton X-100 both inhibited the hydrolyses of lysophospholipids and monoacylglycerol.  相似文献   

7.
Abstract: Lysophospholipids are generated during the turnover and breakdown of membrane phospholipids. We have identified and partially characterized three enzymes involved in the metabolism of lysophospholipids in human brain, namely, lysophospholipase, lysophospholipid:acyl-CoA acyltransferase (acyltransferase), and lysophospholipid:lysophospholipid transacylase (transacylase). Each enzyme displayed comparable levels of activity in biopsied and autopsied human brain, although in all cases the activity was somewhat lower in human than that in rat brain. All three enzymes were localized predominantly in the particulate fraction, with lysophospholipase possessing the greatest activity followed by acyltransferase and transacylase. Lysophosphatidylcholine possessed a Km in the micromolar range for lysophospholipase and transacylase, and in the millimolar range for acyltransferase, whereas arachidonyl-CoA displayed a Km in the micromolar range for acyltransferase. The three enzymes differed in their pH optima, with lysophospholipase being most active at pH 8.0, transacylase at pH 7.5, and acyltransferase at pH 6.0. Both bromophenacyl bromide and N-ethylmaleimide inhibited lysophospholipase activity and, to a lesser extent, that of acyltransferase and transacylase. None of the enzyme activities were affected by the presence of dithiothreitol or EDTA, although particulate lysophospholipase was activated approximately two-fold by the addition of 5 mM MgCl2 or CaCl2 but not KCl. Transacylating activity was stimulated by CoA, the EC50 of activation being 6.8 µM. Acyltransferase displayed an approximately threefold preference for arachidonyl-CoA over palmitoyl-CoA, whereas the acylation rate of different lysophospholipids was in the order lysophosphatidylinositol > 1-palmitoyl lysophosphatidylcholine > 1-oleoyl lysophosphatidylcholine ? lysophosphatidylserine > lysophosphatidylethanolamine. This, and the preference of human brain phospholipase A2 for phosphatidylinositol, suggests that this phospholipid may possess a higher turnover rate than the other phospholipid classes examined. Human brain homogenates also possessed the ability to transfer fatty acid from lysophosphatidylcholine to lysophosphatidylethanolamine. In addition, we also present evidence that diacylglycerophospholipids can act as acyl donors for the transacylation of lysophospholipids. We have therefore demonstrated the presence of, and partially characterized, three enzymes that are involved in the metabolism of lysophospholipids in human brain. Our results suggest that lysophospholipase may be the major route by which lysophospholipids are removed from the cell membrane in human brain. However, all three enzymes likely play an important role in the remodeling of membrane composition and thereby contribute to the overall functioning of membrane-associated processes.  相似文献   

8.
Carboxyl ester lipase (CEL), previously named cholesterol esterase or bile salt-stimulated (or dependent) lipase, is a lipolytic enzyme capable of hydrolyzing cholesteryl esters, tri-, di-, and mono-acylglycerols, phospholipids, lysophospholipids, and ceramide. The active site catalytic triad of serine-histidine-aspartate is centrally located within the enzyme structure and is partially covered by a surface loop. The carboxyl terminus of the protein regulates enzymatic activity by forming hydrogen bonds with the surface loop to partially shield the active site. Bile salt binding to the loop domain frees the active site for accessibility by water-insoluble substrates. CEL is synthesized primarily in the pancreas and lactating mammary gland, but the enzyme is also expressed in liver, macrophages, and in the vessel wall. In the gastrointestinal tract, CEL serves as a compensatory protein to other lipolytic enzymes for complete digestion and absorption of lipid nutrients. Importantly, CEL also participates in chylomicron assembly and secretion, in a mechanism mediated through its ceramide hydrolytic activity. Cell culture studies suggest a role for CEL in lipoprotein metabolism and oxidized LDL-induced atherosclerosis. Thus, this enzyme, which has a wide substrate reactivity and diffuse anatomic distribution, may have multiple functions in lipid and lipoprotein metabolism, and atherosclerosis.  相似文献   

9.
To elucidate the roles of conserved Asp residues of Bacillus cereus sphingomyelinase (SMase) in the kinetic and binding properties of the enzyme toward various substrates and Mg2+, the kinetic data on mutant SMases (D126G and D156G) were compared with those of wild type (WT) enzyme. The stereoselectivity of the enzyme in the hydrolysis of monodispersed short-chain sphingomyelin (SM) analogs and the binding of Mg2+ to the enzyme were not affected by the replacement of Asp126 or Asp156. The pH-dependence curves of kinetic parameters (1/Km and kcat) for D156G-catalyzed hydrolysis of micellar SM mixed with Triton X-100 (1:10) and of micellar 2-hexadecanoylamino-4-nitrophenylphosphocholine (HNP) were similar in shape to those for WT enzyme-catalyzed hydrolysis. On the other hand, the curves for D126G lacked the transition observed for D156G and WT enzymes. Comparison of the values and the shape of pH-dependence curves of kinetic parameters indicated that Asp126 of WT SMase enhances the enzyme's catalytic activity toward both substrates and its binding of HNP but not SM. The deprotonation of Asp126 enhances the substrate binding and slightly suppresses the catalytic activity toward both substrates. Asp156 of WT SMase acts to decrease the binding of both substrates and the catalytic activity to HNP but not SM. From the present study and the predicted three-dimensional structure of B. cereus SMase, Asp126 was thought to be located close to the active site, and its ionization was shown to affect the catalytic activity and substrate binding.  相似文献   

10.
A modified form of aspartate transcarbamylase is synthesized by Escherichia coli in the presence of 2-thiouracil which does not exhibit homotropic cooperative interactions between active sites yet retains heterotropic cooperative interactions due to nucleotide binding. The conformational changes induced in the modified enzyme by the binding of different ligands (substrates, substrate analogs, a transition state analog, and nucleotide effectors) were studied using ultraviolet absorbance and circular dichroism difference spectroscopy. Comparison of the results for the modified enzyme and its isolated subunits to those for the native enzyme and its isolated subunits showed that the conformational changes detected by these methods are qualitatively similar in the two enzymes. Comparison of the absorbance difference spectra due to the binding of a transition substrate analog to the intact native or modified enzymes to the corresponding results for the isolated subunits suggested that ligand binding causes an increased exposure to solvent of certain tyrosyl and phenylalanyl residues in the intact enzymes but not in the isolated subunits. This result is consistent with a diminution of subunit contacts due to substrate binding in the course of homotropic interactions in the native enzyme. Such conformational changes, though perhaps necessary for homotropic cooperativity, are not sufficient to cause homotropic cooperativity since the modified enzyme gave identical perturbations. Interactions of the transition state analog, N-(phosphonacetyl)-L-aspartate, with the modified enzyme were studied. Enzyme kinetic data obtained at low aspartate concentrations showed that this transition state analog does not stimulate activity, but rather exhibits the inhibition predicted for the total absence of homotropic cooperative interactions in the modified enzyme. Spectrophotometric titrations of the number of catalytic sites with the transition state analog showed that the modified enzyme and its isolated subunits possess, respectively, four and two high affinity sites for the inhibitor instead of six and three observed in the case of the normal enzyme and its isolated catalytic subunits. These results are correlated with the lower specific enzymatic activities of the modified enzyme and its catalytic subunits compared to the normal corresponding enzymatic species.  相似文献   

11.
The sensitivity (change of flux per unit change in the concentration of substrate) and response (change of flux per unit change in the concentration of modifier) are studied for a two-site Adair model in which cooperativity arises from both binding and catalytic interactions. For positive cooperativity, the sensitivity is weakly dependent on the Hill coefficient for the binding case, but can increase without limit for the catalytic case. Negatively cooperative enzymes (binding only) give very large sensitivities compared with positively or non-interacting systems, but the sensitivity rapidly decreases as the saturation increases above 25%. Modifiers greatly enhance the sensitivity; large changes in flux can be obtained for small changes in the concentrations of substrates and modifiers. In general, increasing the degree of kinetic cooperativity decreases the degree of binding cooperativity; selective pressure to maximize the sensitivity and response of allosteric enzymes may act to optimize cooperativity of binding modifiers and kinetic cooperativity of substrate turnover. The initial velocity equations including modifiers can be extended to bi-substrate, cooperative kinetics. The kinetics of methanol dehydrogenase are discussed.  相似文献   

12.
Phospholipase A2 at the bilayer interface.   总被引:2,自引:0,他引:2  
F Ramirez  M K Jain 《Proteins》1991,9(4):229-239
Interfacial catalysis is a necessary consequence for all enzymes that act on amphipathic substrates with a strong tendency to form aggregates in aqueous dispersions. In such cases the catalytic event occurs at the interface of the aggregated substrate, the overall turnover at the interface is processive, and it is influenced the molecular organization and dynamics of the interface. Such enzymes can access the substrate only at the interface because the concentration of solitary monomers of the substrate in the aqueous phase is very low. Moreover, the microinterface between the bound enzyme and the organized substrate not only facilitates formation of the enzyme-substrate complex, but a longer residence time of the enzyme at the substrate interface also promotes high catalytic processivity. Binding of the enzyme to the substrate interface as an additional step in the overall catalytic turnover permits adaptation of the Michaelis-Menten formalism as a basis to account for the kinetics of interfacial catalysis. As shown for the action of phospholipase A2 on bilayer vesicles, binding equilibrium has two extreme kinetic consequences. During catalysis in the scooting mode the enzyme does not leave the surface of the vesicle to which it is bound. On the other hand, in the hopping mode the absorption and desorption steps are a part of the catalytic turnover. In this minireview we elaborate on the factors that control binding of pig pancreatic phospholipase A2 to the bilayer interface. Binding of PLA2 to the interface occurs through ionic interactions and is further promoted by hydrophobic interactions which probably occur along a face of the enzyme, with a hydrophobic collar and a ring of cationic residues, through which the catalytic site is accessible to substrate molecules in the bilayer. An enzyme molecule binds to the surface occupied by about 35 lipid molecules with an apparent dissociation constant of less than 0.1 pM for the enzyme on anionic vesicles compared to 10 mM on zwitterionic vesicles. Results at hand also show that aggregation or acylation of the protein is not required for the high affinity binding or catalytic interaction at the interface.  相似文献   

13.
A kinetic theory is proposed for enzymatic reactions proceeding in reversed micellar systems in organic solvents, and involving substrates capable of partitioning among all pseudophases of the micellar system i.e. aqueous cores of reversed micelles, micellar membranes and organic solvent. The theory permits determination of true (i.e. with reference to the aqueous phase, where solubilized enzyme is localized) catalytic parameters of the enzyme, provided partition coefficients of the substrate between different phases are known. The validity of the kinetic theory was verified by the example of oxidation of aliphatic alcohols catalyzed by horse liver alcohol dehydrogenase in the system of reversed sodium bis(2-ethylhexyl)sulfosuccinate (AOT, aerosol OT) micelles in octane. In order to determine partition coefficients of alcohols between phases of the micellar system, flow microcalorimetry technique was used. It was shown that in the first approximation, the partition coefficient of the substrate in a simple biphasic system consisting of water and corresponding organic solvent can be used as an estimate for the partition coefficient of the substrate between aqueous and organic solvent phases of the micellar system. True values of the Michaelis constant of alcohols in the micellar system, determined using suggested approach, are equal to those obtained in aqueous solution and differ from apparent values referred to the total volume of the system. The results clearly show that the previously reported shift in the substrate specificity of HLADH, observed on changing from aqueous solution to the system of reversed aerosol OT micelles in octane, is apparent and can be explained on the basis of partitioning effects of alcoholic substrates between phases of the micellar system.  相似文献   

14.
Methyl arachidonyl fluorophosphonate (MAFP) is a known inhibitor of cytosolic phospholipase A2 and some other serine enzymes. MAFP was found here to be an irreversible inhibitor of human pancreatic lipase-related protein 2 (HPLRP2), an enzyme displaying lipase, phospholipase A1 and galactolipase activities. In the presence of MAFP, mass spectrometry analysis of HPLRP2 revealed a mass increase of 351Da, suggesting a covalent binding of MAFP to the active site serine residue. When HPLRP2 was pre-incubated with MAFP before measuring residual activity, a direct inhibition of HPLRP2 occurred, confirming that HPLRP2 has an active site freely accessible to solvent and differs from most lipases in solution. HPLRP2 activities on tributyrin (TC4), phosphatidylcholine (PC) and monogalactosyl dioctanoylglycerol (C8-MGDG) were equally inhibited under these conditions. Bile salts were not required to trigger the inhibition, but they significantly increased the rate of HPLRP2 inhibition, probably because of MAFP micellar solubilization. Since HPLRP2 is active on various substrates that self-organize differently in the presence of water, HPLRP2 inhibition by MAFP was tested in the presence of these substrates after adding MAFP in the course of the lipolysis reaction. In this case, the rates of inhibition of lipase, phospholipase A1 and galactolipase activities were not equivalent (triglycerides>PC>MGDG), suggesting different enzyme/inhibitor partitioning between the aqueous phase and lipid aggregates. The inhibition by MAFP of a well identified phospholipase A1 (HPLRP2), present in pancreatic juice and also in human monocytes, indicates that MAFP cannot be used for discriminating phospholipase A2 from A1 activities at the cellular level.  相似文献   

15.
16.
Initial velocity studies can be used to define the function of chemically modifiable residues in the active site of a multisubstrate enzyme. Since the method relies on measuring biological activity, it has the advantage that it can be used with small amounts of relatively impure enzyme, but requires that modified enzyme molecules have some residual catalytic activity. The kinetic analysis of the modified enzyme can be carried out in the presence of some unmodified enzyme molecules. Consideration of examples of single- and multisubstrate enzymic reactions shows that interpretation of changes in apparent Km and apparent V values following chemical modification, in terms of effects on substrate binding or catalysis or both, requires a detailed knowledge of the kinetic reaction sequence. In the case of multisubstrate enzymes, it is necessary to ensure that, during the kinetic investigation, the concentrations of the non-varied substrates remain at near-saturating levels. For this reason, and because modification may induce changes in the rate-limiting step, a full kinetic analysis of the modified enzyme is advisable.  相似文献   

17.
18.
Wang X  Kemp RG 《Biochemistry》2001,40(13):3938-3942
Escherichia coli phosphofructokinase (PFK) has been proposed to have a random, nonrapid equilibrium mechanism that produces nonallosteric ATP inhibition as a result of substrate antagonism. The consequences of such a mechanism have been investigated by employing alternative substrates and mutants of the enzyme that produce a variety of nonallosteric kinetic patterns demonstrating substrate inhibition and sigmoid velocity curves. Mutations of a methionine residue in the sugar phosphate binding site produced apparent cooperativity in the interaction of fructose 6-phosphate. Cooperativity could also be seen with native enzyme using a poorly binding substrate, fructose 1-phosphate. With an alternative nucleotide, 1-carboxymethyl-ATP, coupled with a mutation that introduced a negative charge in the nucleotide binding site, one could observe substrate inhibition by fructose 6-phosphate and apparent cooperativity in the interaction with nucleotide. Furthermore, the use of a phosphoryl donor, gamma-thiol-ATP, which greatly reduced the catalytic rate, apparently facilitated the equilibration of all binding reactions and eliminated ATP inhibition. These unusual kinetic patterns could be interpreted within the random, steady-state model as reflecting changes in the rates of particular binding and catalytic events.  相似文献   

19.
Purification and substrate specificity of Staphylococcus hyicus lipase   总被引:7,自引:0,他引:7  
The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.  相似文献   

20.
The dynamics of enzyme cooperativity are examined by studying a homotropic dimeric enzyme with identical reaction sites, both of which follow irreversible Michaelis-Menten kinetics. The problem is approached via scaling and linearization of the governing mass action kinetic equations. Homotropic interaction between the two sites are found to depend on three dimensionless groups, two for the substrate binding step and one for the chemical transformation. The interaction between the two reaction sites is shown capable of producing dynamic behavior qualitatively different from that of a simple Michaelis-Menten system; when the two sites interact to increase enzymatic activity over that of two independent monomeric enzymes (positive cooperativity) damped oscillatory behavior is possible, and for negative cooperativity in the chemical transformation step a multiplicity of steady states can occur, with one state unstable and leading to runaway behavior. Linear analysis gives significant insight into system dynamics, and their parametric sensitivity, and a way to identify regions of the parameter space where the approximate quasi-stationary and quasi-equilibrium analyses are appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号