首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 26K fragment of troponin T, which was produced by endogenous proteases in rabbit skeletal muscle, was isolated by SE-Sephadex column chromatography. This fragment sensitized both superprecipitation and ATPase of actomyosin to calcium ions, to the same extent as troponin T. There was no difference in affinity for tropomyosin between this fragment and troponin T as examined by affinity chromatography. Amino acid analysis showed that this fragment consisted of residues Ala-46-Lys-259 of troponin T. The N-terminal 45 residues of troponin T, therefore, are not essential for the physiological action of troponin T. It was also observed that Ca2+-activated neutral protease digested troponin T into the 26K fragment in the native thin filament, while the protease digested troponin T in a different way in the reconstituted thin filament.  相似文献   

2.
Inhibition of rabbit skeletal muscle acto-S1 ATPase by troponin T   总被引:2,自引:0,他引:2  
  相似文献   

3.
Using a new methodological approach based on the binding of 125I-labeled troponin C to troponins I and T immobilized on polyvinylchloride, the Ca2+-dependent interaction of troponin components was investigated. In the absence of Ca2+, two types of sites of troponin C--troponin T interaction were revealed (Kd = 3.6.10(-8) M and 5.10(-7) M). It was found that Ca2+ induced the formation of a troponin I--troponin C complex which was resistant to 5 M urea (Kd = 4.10(-8) M). In the absence of Ca2+, the binary troponin T--troponin C complex also revealed two types of interaction sites (Kd = 7.1.10(-8) M and 2.10(-7) M); however, in the presence of Ca2+ only high affinity sites whose number increased almost 2-fold were revealed. The events that may take place in the whole troponin complex during Ca2+ binding by troponin C are discussed.  相似文献   

4.
We determined the free energy of interaction between rabbit skeletal troponin I (TNI) and troponin C (TNC) at 10 degrees and 20 degrees C with fluorescently labeled proteins. The sulfhydryl probe 5-iodoacetamidoeosin (IAE) was attached to cysteine (Cys)-98 of TNC and to Cys-133 of TNI, and each of the labeled proteins was titrated with the other unlabeled protein. The association constant for formation of the complex between labeled TNC (TNC*) and TNI was 6.67 X 10(5) M-1 in 0.3 M KCl, and pH 7.5 at 20 degrees C. In the presence of bound Mg2+, the binding constant increased to 4.58 X 10(7) M-1 and in the presence of excess of Ca2+, the association constant was 5.58 X 10(9) M-1. Very similar association constants were obtained when labeled TNI was titrated with unlabeled TNC. The energetics of Ca2+ binding to TNC* and the complex TNI X TNC* were also determined at 20 degrees C. The two sets of results were used to separately determine the coupling free energy for binding TNI and Mg2+, or Ca2+ to TNC. The results yielded a total coupling free energy of -5.4 kcal. This free energy appeared evenly partitioned into the two species: TNI X TNC(Mg)2 or TNI X TNC(Ca)2, and TNI X TNC(Ca)4. The first two species were each stabilized by -2.6 kcal, with respect to the Ca2+ free TNI X TNC complex, and TNI X TNC(Ca)4 was stabilized by -2.8 kcal, respect to TNI X TNC(Ca)2 or TNI X TNC(Mg)2. The coupling free energy was shown to produce cooperatively complexes formed between TNI and TNC in which the high affinity sites were initially saturated as a function of free Ca2+ to yield TNI X TNC(Ca)4. This saturation occurred in the free Ca2+ concentration range 10(-7) to 10(-5) M. The cooperative strengthening of the linkage between TNI and TNC induced by Ca2+ binding to the Ca2+-specific sites of TNC may have a direct relationship to activation of actomyosin ATPase. The nature of the forces involved in the Ca2+-induced strengthening of the complex is discussed.  相似文献   

5.
A method for isolation of troponin T kinase (ATP-protein phosphotransferase, EC 2.7.1.37) from rabbit skeletal muscles in proposed. The method gives a 7000-10 000-fold purification and results in an enzyme with specific activity of 400-800-nmol x min-1 x mg-1 of protein. The molecular weight of tropin T kinase as determined by gel filtration exceeds 500 000. Electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulphate revealed that isolated preparations of the enzyme consisted of at least three distinct proteins with apparent mol.wt. of 50 000, 46 000 and 31 000. The enzyme phosphorylates isolated troponin T at a rate which exceeds the phosphorylation rates of casein, phosvitin, histones, phosphorylase b and protamine 5-30-fold. Within the whole troponin complex, only troponin T is phosphorylated by the enzyme. The enzyme phosphorylates only the N-terminal serine residue of troponin T, i.e. the site that is normally phosphorylated in the whole troponin complex isolated from rabbit skeletal muscles.  相似文献   

6.
7.
D H Heeley  L B Smillie 《Biochemistry》1988,27(21):8227-8232
Troponin T has been shown to interact significantly with F-actin at 150 mM KC1 by using an F-actin pelleting assay and 125I-labeled proteins. While troponin T fragment T1 (residues 1-158) fails to pellet with F-actin, fragment T2 (residues 159-259) mimics the binding properties of the intact molecule. The weak competition of T2 binding to F-actin, shown by subfragments of T2, indicates that the interaction site(s) encompass(es) an extensive segment of troponin T. The extent of pelleting of troponin T (or T2) with F-actin is only marginally altered in the binary complex troponin IT (or T2), indicating that the direct interactions either of troponin T (or T2) or of troponin I, or both, with F-actin are weakened when these components are incorporated into a binary complex. The binding of troponin T (or T2) is moderately (-Ca2+) or more extensively reduced (+Ca2+) in the presence of troponin C. The pelleting of Tn-T seen in the presence of Tn-C (-Ca2+) and Tn-I was further reduced when either Tn-I or Tn-C (-Ca2+) was added, respectively, to form a fully reconstituted Tn complex. As noted by others, whole troponin shows little sensitivity to Ca2+ in its binding to F-actin (-tropomyosin). These and other observations, taken together with the restoration of troponin IC (+/- Ca2+) binding to F-actin by troponin T, implicate a role for the interaction of troponin T and F-actin in the thin filament assembly.  相似文献   

8.
Adenosine deaminase from bovine skeletal muscle catalyzes the hydrolytic deamination of adenosine to inosine and ammonia via an ordered Uni-Bi mechanism, if water is not considered as a true second substrate, as deduced from the inhibition pattern products. The inhibition constants (Ki) obtained for inosine and ammonia were 316 mumol/l and 2 mol/l, respectively. The activation energy of the reaction has been calculated as 10 kcal/mol, delta H* and delta F* as 7.9 and 15.6 kcal/mol, respectively, and delta S* as -23 cal/mol/degrees K.  相似文献   

9.
10.
The complete amino acid sequence of rabbit skeletal muscle troponin I was determined by the isolation of the cyanogen bromide fragments and the tryptic methionine-containing peptides. Troponin I contains 179 amino acid residues and has a molecular weight of 20864. Its N-terminus is acetylated. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50055 (23 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1975) 145, 5.  相似文献   

11.
W D McCubbin  K Oikawa  C M Kay 《FEBS letters》1986,195(1-2):17-22
Troponin C from turkey skeletal muscle has been compared with its chicken counterpart in terms of amino acid composition and fragmentation patterns and with rabbit TN-C by Ca2+ binding and conformational response to Ca2+ as monitored by CD and fluorescence. Cyanogen bromide and tryptic digestion mixtures of chicken and turkey TN-C have been separated by reversed-phase HPLC. The similarity of the elution profiles, along with the almost identical amino acid compositional data, suggest that the sequences are essentially equivalent. Both turkey and rabbit TN-C bound 2 mol Ca2+/mol protein at pH 5.3, while at pH 6.8, this figure was raised to 4 mol/mol protein. Circular dichroism and fluorescence measurements indicated that the conformations of the two proteins responded in a very similar manner to the presence of Ca2+.  相似文献   

12.
Microcalorimetic titrations were carried out to measure the thermodynamic functions of bullfrog skeletal muscle troponin C (TnC) in the interaction with Ca2+ and Mg2+, at 25 degrees C and at pH 7.0. Enthalpy titration curves with Ca2+ were composed of three stages both in the presence and in the absence of Mg2+. The first (0-2 mol Ca2+/mol TnC) and the third (greater than 3 mol Ca2+/mol TnC) stages were exothermic and the second stage (2-3 mol Ca2+/mol TnC) was endothermic. Mg2+ affected the first stage to decrease the amount of heat produced but not the second and third stages. The enthalpy titration with Mg2+, in the absence of Ca2+, was slightly exothermic initially and then became endothermic beyond 2-3 mol Mg2+/mol TnC. Absorption of heat was observed throughout the additions of Mg2+ in the presence of 1 mM Ca2+. The results indicate that bullfrog TnC has two high-affinity Ca2+-Mg2+ sites, two low-affinity Ca2(+)-specific sites, and two or around two Mg2(+)-specific sites. Based on the enthalpy and entropy changes, the Ca2+ binding reactions of TnC were classified into three types, indicating thermodynamic variety in the binding sites of the molecule.  相似文献   

13.
14.
15.
16.
The fluorescence titration curve of skeletal muscle troponin containing TnI with 2-[4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid-labeled Cys-48 and/or Cys-64 was composed of two transition curves. One transition occurred at the pCa region higher than 8.0, and the other between pCa 8.0 and 6.0. The transition at the lower pCa region had a midpoint of pCa 6.85, and the midpoint did not depend on Mg2+. The time course of the fluorescence change subsequent to the rapid pCa-jump of the solution was biphasic. The fast phase was due to the transition at the lower pCa region, and the rate constant of the process was characteristic of the conformational change of the protein induced by Ca2+ binding to the low affinity Ca2+-binding sites of TnC. The slow phase was from the transition at the higher pCa region, and its rate constant was characteristic of the conformational change of the protein induced by Ca2+ binding to the high affinity Ca2+-binding sites of TnC. Therefore we can conclude that the fluorescence probe bound to Cys-48 and/or Cys-64 of TnI detects the conformational change of the Tn complex induced by Ca2+ binding to both the low and high affinity Ca2+-binding sites of TnC. The fluorescence probe bound to Cys-133 of TnI or Met residues of TnT detected the conformational change of the Tn complex induced by Ca2+ binding to the low affinity Ca2+-binding sites of TnC.  相似文献   

17.
18.
Sarcolemmal membranes were obtained from skeletal muscle of rabbits at different developmental stages. Lipid and protein composition, as well as enzymatic activities, were compared in sarcolemma prepared in vesicular form. During the developmental period no distinct changes in lipid content and composition were found. Some changes in protein pattern and activities of marker enzymes (5′-nucleotidase and ouabain-sensitive Na+,K+-ATPase) were detected. Also, changes in Mg2+-ATPase and Mg2+, Ca2+-ATPase activities during development were found.  相似文献   

19.
20.
A stacking sodium dodecyl sulfate polyacrylamide gel electrophoresis system has been used to resolve and quantify all the major myofibrillar protein components (actin, myosin, tropomyosin, and troponin C, T, and I). Quantification was achieved by densitometry of the fast green-stained gels calibrated with the use of purified proteins. The approximate molar ratios of these proteins in rabbit muscle are: actin: myosin: tropomyosin: troponin T: troponin I: troponin C = 7:1:1:1:1:1. On the basis of these results and available structural information one obtains an estimate of 254 myosin molecules per thick filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号