首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Actin filament bundles can shape cellular extensions into dramatically different forms. We examined cytoskeleton formation during wing hair morphogenesis using both confocal and electron microscopy. Hairs elongate with linear kinetics (approximately 1 microm/h) over the course of approximately 18 h. The resulting structure is vividly asymmetric and shaped like a rose thorn--elongated in the distal direction, curved in two dimensions with an oval base and a round tip. High-resolution analysis shows that the cytoskeleton forms from microvilli-like pimples that project actin filaments into the cytoplasm. These filaments become cross-linked into bundles by the sequential use of three cross-bridges: villin, forked and fascin. Genetic loss of each cross-bridge affects cell shape. Filament bundles associate together, with no lateral membrane attachments, into a cone of overlapping bundles that matures into an oval base by the asymmetric addition of bundles on the distal side. In contrast, the long bristle cell extension is supported by equally long (up to 400 microm) filament bundles assembled together by end-to-end grafting of shorter modules. Thus, bristle and hair cells use microvilli and cross-bridges to generate the common raw material of actin filament bundles but employ different strategies to assemble these into vastly different shapes.  相似文献   

2.
Drosophila bristle cells are shaped during growth by longitudinal bundles of cross-linked actin filaments attached to the plasma membrane. We used confocal and electron microscopy to examine actin bundle structure and found that during bristle elongation, snarls of uncross-linked actin filaments and small internal bundles also form in the shaft cytoplasm only to disappear within 4 min. Thus, formation and later removal of actin filaments are prominent features of growing bristles. These transient snarls and internal bundles can be stabilized by culturing elongating bristles with jasplakinolide, a membrane-permeant inhibitor of actin filament depolymerization, resulting in enormous numbers of internal bundles and uncross-linked filaments. Examination of bundle disassembly in mutant bristles shows that plasma membrane association and cross-bridging adjacent actin filaments together inhibits depolymerization. Thus, highly cross-bridged and membrane-bound actin filaments turn over slowly and persist, whereas poorly cross-linked filaments turnover more rapidly. We argue that the selection of stable bundles relative to poorly cross-bridged filaments can account for the size, shape, number, and location of the longitudinal actin bundles in bristles. As a result, filament turnover plays an important role in regulating cytoskeleton assembly and consequently cell shape.  相似文献   

3.
Obplacental giant cells are large (less than or equal to 210 microns) polyploid cells that appear in the stroma of the pregnant uterus of the rabbit following ovoimplantation. Histological examination of a complete developmental series indicates that obplacental giant cells arise from trophoblastic knobs that have traversed the uterine epithelium during early implantation. During maturation, the cells undergo a massive (approximately 6,000%) increase in volume and penetrate deeply into the uterine stroma and myometrium, where they often become associated with blood vessels and smooth muscle cells. Giant cells at mid-gestation contain one or two large nuclei with prominent nucleoli and appear to be amitotic. They are rich in Golgi complexes, RER, SER, and cortically distributed cytoplasmic filaments, and contain intracellular canaliculi lined by microvilli. Giant cells vary with respect to the occurrence of lipid droplets, phagocytotic inclusions, lysosomal structures, and electron-dense granules. Immunocytochemistry demonstrates that the giant cells exhibit intermediate filaments related to cytokeratin and vimentin, but are negative for desmin and for an endothelial cell marker, Factor VIII-related antigen. The cells are positive for cytokeratin from their inception, but only become vimentin-positive between Days 12 and 15 of pregnancy, a change seemingly related to their detachment from epithelial tissue to take on an independent existence. Our findings indicate that the giant cells originate from obplacental trophoblast and, at maturity, exhibit cytoskeletal characteristics of isolated epithelial cells, as well as a complement of organelles suggestive of synthetic activity.  相似文献   

4.
Single internodal excitable cells of Chara corallina were exposed to CW, pulse-modulated and sinusoidally modulated S-band microwave fields in a temperature-controled waveguide exposure chamber. All electrical measurements were made external to the waveguide (ie, under no impressed microwave field). The dependent variables measured before, during, and after exposure to the S-band microwave fields included: resting potential, amplitude of the action potential, rise and decay time of the action potential, conduction velocity, and excitability. Cells maintained at 22 ± 0.1 °C during exposure showed no consistent or statistically significant microwave-dependent alterations in any of the dependent variables.  相似文献   

5.
The electrical activity that occurs in plants has not yet been detected magnetically. Magnetic detection of electrical activity in some animal as well as in human cells and organs, on the other hand, is an established research method. Our experiments demonstrate the propagation of a single action potential in the internodal cell of the green algae Chara corallina, measured magnetically. The propagation velocity and the intracellular current were determined.  相似文献   

6.
Summary We report on the novel features of the actin cytoskeleton and its development in characean internodal cells. Images obtained by confocal laser scanning microscopy after microinjection of living cells with fluorescent derivatives of F-actin-specific phallotoxins, and by modified immunofluorescence methods using fixed cells, were mutually confirmatory at all stages of internodal cell growth. The microinjection method allowed capture of 3-dimensional images of high quality even though photobleaching and apparent loss of the probes through degradation and uptake into the vacuole made it difficult to record phallotoxin-labelled actin over long periods of time. When injected at appropriate concentrations, phallotoxins affected neither the rate of cytoplasmic streaming nor the long-term viability of cells. Recently formed internodal cells have relatively disorganized actin bundles that become oriented in the subcortical cytoplasm approximately parallel to the newly established long axis and traverse the cell through transvacuolar strands. In older cells with central vacuoles not traversed by cytoplasmic strands, subcortical bundles are organized in parallel groups that associate closely with stationary chloroplasts, now in files. The parallel arrangement and continuity of actin bundles is maintained where they pass round nodal regions of the cell, even in the absence of chloroplast files. This study reports on two novel structural features of the characean internodal actin cytoskeleton: a distinct array of actin strands near the plasma membrane that is oriented transversely during cell growth and rings of actin around the chloroplasts bordering the neutral line, the zone that separates opposing flows of endoplasm.  相似文献   

7.
Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium.  相似文献   

8.
9.
Using mainly fluorescence microscopy after rhodamine-phalloidin staining, the F-actin distribution in the mouse lens epithelium was studied with regard to the effects of age, genetic strain, and mechanical injury. These studies have revealed that aside from its association with the plasma membrane the structural organization of F-actin in the mouse lens epithelium in situ is characterized by two major configurations: (1) a filamentous arrangement in such patterns as stress fibers, polygonal arrays (PAs), and meshworks, and (2) a highly concentrated structure called a sequestered actin bundle (SAB). The aging study indicated that the SAB is a consistent character in C57BL/6 mice from the age of 5 wk on, but not in CF1 mice. The size and shape of the SAB change gradually with age as inferred from two-dimensional measurements. The genetic study on the SAB character using hybrids and congenic strains showed that it is inherited as a Mendelian dominant, probably multigenic mode. Finally, the injury study revealed a structural modification in cells around the wound, including flattening of cells at the edge and extension of processes into the wound space. In the rest of the epithelium, injury amplified membrane infolding and fluorescence of polygonal arrays but diminished the size and fluorescence intensity of SABs. These changes are thought to be correlated with wound repair involving cell division and migration. These studies illustrate the variability in F-actin expression in situ in lens epithelial cells that can be induced by intrinsic and extrinsic factors.  相似文献   

10.
The turnover rates of prolyl hydroxylase and immunologically related (cross reacting) protein were examined using labeled leucine as precursor or by measuring the decay of elevated prolyl hydroxylase and immunologically cross-reacting protein back to basal levels. Prolyl hydroxylase and immunologically cross-reacting protein were purified from neonatal rabbit skin at various times following the administration of [3H]leucine. Prolyl hydroxylase was purified by affinity chromatography. Immunologically cross-reacting protein was purified by antibody precipitation from the dialyzed 70% (NH4)SO4 supernatants and subsequent electrophoresis on 10% sodium dodecyl sulfate-polyacrylamide slab gels. The radioactivity of the species isolated, which corresponded to the two major subunits of prolyl hydroxylase, was used in the turnover studies of immunologically cross-reacting protein. The peak incorporation of label into prolyl hydroxylase was found to be 12 h while for immunologically cross-reacting protein this occured within 2 h. The loss of radioactivity from these protein pools denotes an apparent t12 for prolyl hydroxylase of 73 h and a 12 for immunologically cross-reacting protein of 53 h. From the specific activity of free skin leucine pools, the effect of reutilization could be corrected and a true t12 for prolyl hydroxylase of 45 h was determined. The t12 values of these proteins were determined by a second method in which prolyl hydroxylase and immunologically cross-reacting protein in the aorta and liver of adult male rabbits were elevated by daily epinephrine-thyroxine treatment for 12 days. The decline of prolyl hydroxylase and immunologically cross-reacting protein with termination of treatment in the aorta denotes values of 42 h for enzyme and 53 h for immunologically cross-reacting protein. Calculated enzyme κd values, by both methods, indicate that breakdown of enzyme does not account for tissue immunologically cross-reacting protein.  相似文献   

11.
Drosophila Quail protein is required for the completion of fast cytoplasm transport from nurse cells to the oocyte, an event critical for the production of viable oocytes. The abundant network of cytoplasmic filamentous actin, established at the onset of fast transport, is absent in quail mutant egg chambers. Previously, we showed that Quail is a germline-specific protein with sequence homology to villin, a vertebrate actin-regulating protein. In this study, we combined biochemical experiments with observations in egg chambers to define more precisely the function of this protein in the regulation of actin-bundle assembly in nurse cells. We report that recombinant Quail can bind and bundle filamentous actin in vitro in a manner similar to villin at a physiological calcium concentration. In contrast to villin, Quail is unable to sever or cap filamentous actin, or to promote nucleation of new actin filaments at a high calcium concentration. Instead, Quail bundles the filaments regardless of the calcium concentration. In vivo, the assembly of nurse-cell actin bundles is accompanied by extensive perforation of the nurse-cell nuclear envelopes, and both of these phenomena are manifestations of nurse-cell apoptosis. To investigate whether free calcium levels are affected during apoptosis, we loaded egg chambers with the calcium indicator Indo-1. Our observations indicate a rise in free calcium in the nurse-cell cytoplasm coincident with the permeabilization of the nuclear envelopes. We also show that human villin expressed in the Drosophila germline could sense elevated cytoplasmic calcium; in nurse cells with reduced levels of Quail protein, villin interfered with actin-bundle stability. We conclude that Quail efficiently assembles actin filaments into bundles in nurse cells and maintains their stability under fluctuating free calcium levels. We also propose a developmental model for the fast phase of cytoplasm transport incorporating findings presented in this study.  相似文献   

12.
Okadaic acid, a non-TPA-type tumour promoter, induces hyperphosphorylation of a 60-kd protein in primary human fibroblasts. Treatment with TPA-type tumour promoters (e.g. TPA and teleocidin) did not cause this hyperphosphorylation. Phosphorylation of this protein was not seen at times earlier than 90 min after the addition of 75 ng/ml okadaic acid to the proliferating cell cultures. The presence of inhibitors such as actinomycin D and cycloheximide, did not significantly influence the level of hyperphosphorylation induced by okadaic acid treatment. By immunoblotting using an antibody anti-nucleolin, the 60-kd protein was identified as a fragment of nucleolar protein, nucleolin. Similarly, antibodies against the 60-kd protein cross-reacted with nucleolin. Furthermore peptide mapping, using staphylococcal V8 protease, showed that the 60-kd protein phosphorylated by casein kinase II in vitro and the okadaic-acid-induced hyperphosphorylated 60-kd protein exhibited identical phosphopeptide maps, indicating that there is also structural relatedness between N-60 and nucleolin. Hyperphosphorylation of the nucleolin fragment (N-60) was suppressed by anti-tumour promoter retinoic acid.  相似文献   

13.
Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s(-1), respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.  相似文献   

14.
15.
We have visualized bundles of the actin filaments of a Characean internodal cell and investigated the sliding motion of organelles with myosin on the bundles. The investigation revealed that a power spectrum of the sliding velocity time series of the organelle has two remarkable peaks near 4 and 7.5 Hz. This suggests that myosin molecules attached to the organelle not independently but cooperatively produce the sliding force. Moreover, we have found that some organelles move in the opposite direction of their sliding motion for several hundred milliseconds along the bundles. The fluctuation analysis of that motion showed that a power spectrum profile of the reverse velocity time series almost agreed with that of the sliding velocity time series. This result suggests that the dynamics of the reverse motion is the same as that of the sliding motion.  相似文献   

16.
This paper demonstrates that a group of proteins, representing a major secretory component of cattle conceptuses, is immunologically related to ovine trophoblast protein-1 (oTP-1), a principal product of culture Day 13 to 21 sheep conceptuses. Conceptuses from cows (Day 17-18) and ewes (Day 16-17) were cultured for 24 h in the presence of L-[3H]leucine. By using a rabbit antiserum to oTP-1 and Ouchterlony double-immunodiffusion analysis it was shown that material in the bovine conceptus culture medium was serologically related, but not identical, to oTP-1. A solid-phase radiobinding assay indicated that the cross-reacting bovine secretory component had an affinity for anti-oTP-1 antibody similar to that of oTP-1. Anti-oTP-1 antiserum specifically immunoprecipitated a group of 6-8 polypeptides from culture medium of cow conceptuses which, when analysed by two-dimensional gel electrophoresis, fell into two major molecular weight classes (22,000 and 24,000) with isoelectric points between 6.5 and 6.7. These immunoprecipitated polypeptides, defined as bTP-1, constituted the major secretory products of Day 16-25 cow conceptuses. They were larger and more basic than oTP-1 polypeptides (Mr about 18,000; pI 5.4-5.7). Anti-oTP-1 antiserum also recognized the major translation product of Day 17 bovine conceptus mRNA, a polypeptide significantly smaller (Mr approximately 18,000) than the secreted protein. It is suggested that oTP-1 and the homologous bovine protein may play similar roles in the phenomenon of maternal recognition of pregnancy in the two species.  相似文献   

17.
《The Journal of cell biology》1989,109(4):1745-1752
The Torpedo electrocyte is a flattened syncytium derived from skeletal muscle, characterized by two functionally distinct plasma membrane domains. The electrocyte is filled up with a transversal network of intermediate filaments (IF) of desmin which contact in an end-on fashion both sides of the cell. In this work, we show that polyclonal antibodies specific for lamin B recognizes a component of the plasma membrane of Torpedo electrocyte. This protein which thus shares epitopes with lamin B has a relative molecular mass of 54 kD, an acidic IP of 5.4. It is localized exclusively on the cytoplasmic side of the innervated membrane of the electrocyte at sites of IF-membrane contacts. Since our previous work showed that the noninnervated membrane contains ankyrin (Kordeli, E., J. Cartaud, H. O. Nghiem, L. A. Pradel, C. Dubreuil, D. Paulin, and J.-P. Changeux. 1986. J. Cell Biol. 102:748-761), the present results suggest that desmin filaments may be anchored via the 54-kD protein to the innervated membrane and via ankyrin to the noninnervated membrane. These findings would represent an extension of the model proposed by Georgatos and Blobel (Georgatos, S. D., and G. Blobel. 1987a. J. Cell Biol. 105:105-115) in which type III intermediate size filaments are vectorially inserted to plasma and nuclear membranes by ankyrin and lamin B, respectively.  相似文献   

18.
Summary In previous studies on plant cells, antibodies directed against intermediate filaments (IFs) have shown that IF antigens are distributed in one of two quite distinct forms. The first co-distributes with each of the four microtubule arrays (cortical, preprophase band, spindle and phragmoplast), while the second form is associated with cytoplasmic paracrystalline fibrillar bundles (FBs) of 10 nm filaments. Conditions allowing one form to be labelled with antibody have generally proved unsuitable for labelling of the other; this has prevented the simultaneous visualization of the two forms of IF antigen in plants and the study of any possible physical relationships between them at the electron microscopic level. In this paper, we show that ME 101, which recognizes an epitope in the N-terminal portion of all classes of intermediate filaments, stains both forms of plant IF antigen simultaneously in tobacco suspension cells using immunofluorescence or immunogold labelling techniques. These cells contain in their cortex short (ca. l m) fibrillar bundles which stain with ME 101. These bundles appear to be independent of the microtubule-associated epitope which stains in a continuous linear manner with ME 101. When protoplasts are either cleaved open on grids or sequentially extracted with detergents prior to critical point drying, the short fibrillar bundles are specifically labelled by ME 101 tagged with colloidal gold. ME 101 also co-distributed with underlying linear filaments, which appeared to be microtubules. In addition to these structures, the cortex also contains a meshwork of variably-sized fine filaments but these are not labelled with ME 101 nor with an antibody raised against the plant cytoskeleton, which recognizes cytokeratin 8. These results confirm that the fibrillar bundles and the microtubule-associated form of plant IF antigens are present simultaneously rather than experimentally-interconvertible, and that they appear to be physically unconnected.Abbreviations DAPI 4,6-diamidino-2-phenylindole - FB fibrillar bundle - FITC fluorescein isothiocyanate - IF intermediate filaments - MTSB microtubule stabilizing buffer - TBS Tris-buffered-saline  相似文献   

19.
20.
《Cell reports》2023,42(5):112516
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号