首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Unrooted area networks are perhaps a general way in which different historical biogeographical patterns may be combined. Location Southeast Asia up to the West Pacific, Australia, South America. Methods Unrooted area networks based on Primary Brooks Parsimony Analysis of different data sets of Southeast Asian–West Pacific, Australian and South American clades. Results A large Brooks Parsimony historical (cladistic) biogeographic analysis of Southeast Asia and the West Pacific gave a meaningful result when all clades (representing different historical biogeographic patterns) were united into one matrix and an unrooted area network was produced. This network showed geographically adjacent areas as neighbours, which is interpreted as clades dispersing and speciating as soon as areas rafted towards each other. This pseudo‐vicariance mechanism, together with the very limited, mainly linear dispersal possibilities, a few large, widespread clades with many endemic species, and the large overlap in distributions displayed by different patterns, may explain the peculiar result. When applied to examples from other areas (bird data from Australia and South America), unrooted area networks for all data perform very poorly. Main conclusions Unrooted historical general area networks are not universally applicable. In general, it is better to split historical patterns a priori and analyse them separately.  相似文献   

2.
Aim  Several independent studies suggest that oscine passerine birds originated in Eastern Gondwana/Australia and from there spread to Southeast Asia and then to Africa. A recently constructed supertree including 1724 oscine taxa forms the basis for this study, in which we present a more detailed hypothesis of this out-of-Australia scenario.
Location  Australia, Africa, Southeast Asia, western Pacific, Indian Ocean.
Methods  We used the computer program DIVA to identify putative ancestral areas for each node. We also applied a molecular clock calibrated with three recently conducted studies of passerines to estimate the ages of basal nodes. Although these time estimates are rough they give some indication that, together with the putative ancestral areas, they can be compared with known events of plate tectonic movements in the Australian, Southeast Asian and western Pacific regions.
Results  The DIVA analysis shows that Basal Corvida and Crown Corvida originated in Australia. Ancestral nodes for Picathartes / Chaetops and Passerida originated in Africa, and the basal nodes of Sylvioidea also originated in Africa. For Muscicapoidea and Passeroidea we were unable to establish ancestral patterns. The molecular clock showed that Crown Corvida radiated between 20 and 30 Ma whereas Basal Corvida and the Passerida clade radiated from c . 45 to 50 Ma.
Main conclusions  Both approaches agree that: (1) Crown Corvida spread from Australia to Southeast Asia, with several dispersal events around the time when the terranes of Australian and Indomalayan origin came close together some 15 Ma, and (2) a single dispersal event went from Australia across the Indian Ocean to Africa c . 45–50 Ma, leading to the very large radiation of the parvorder Passerida. The latter hypothesis is novel, and contrary to the general view that oscines spread exclusively via Southeast Asia.  相似文献   

3.
A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685-1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (ND1, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia-New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia-New Guinea clade rafted with the Australia-New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia-New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chameleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia-New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.  相似文献   

4.
The relationship between the areas of Southeast Asia and the West Pacific region is still debated because of their complex historical geology and the enormous diversity of taxa. Cladistic methods have previously been used to reconstruct the relationships between areas in the region but never with such a high number of unrelated taxa (35). We use a compilation of phylogenies to investigate area relationships among Southeast Asia and the West Pacific region, run the comparative analysis with LisBeth [based on three‐item analyses (3ia)] and compare the results with recently published geological reconstructions of the region. We discuss the relevance of such an approach to the interpretation of general pattern. The two questions addressed are: (1) is there an emerging common pattern; and (2) how to explain actual distributions of taxa in Southeast Asia and the West Pacific region. Three‐item analysis found 27 optimal trees. An intersection tree reconstructed from the common three‐area statements had an overall retention index of 84.8% and retrieved 13 nodes with two major branches compatible with a separation between Southeast Asia and the West Pacific region (i.e. congruent with some geological reconstructions). Any congruent patterns revealed by the combination of unrelated taxa should reflect a common cause. The extraction of information on area relationships contained in phylogenetic analyses of taxa consists of testing for area homologues. We obtained the tree from this region based on an empirical dataset which we hope will contribute to new insights into area classification in the region.  相似文献   

5.
Homo erectus inhabited a wide geographic area of Asia, ranging from 40 degrees north latitude in China to 8 degrees south latitude in island Southeast Asia. Yet variation within Asian H. erectus and its relation to ecological and temporal parameters have been little studied. I synthesize the revised radiometric chronologies for hominid sites in Asia and their relation to new oxygen isotope curves (proxies for climatic fluctuations and landbridge connections). These data suggest substantial opportunities in the later Pleistocene for both regional isolation and gene flow between hominids in mainland and Southeast Asia. They also suggest that the most northerly located Chinese sites (Zhoukoudian and Nanjing) may have been occupied during sequential, interglacial periods. Probably reflecting these periods of isolation, nonmetric features and principal components analysis (PCA) of calvarial shape suggest regional differentiation between northern Asian and Southeast Asian H. erectus. The most recent Southeast Asian fossils (e.g., Ngandong) conform to the Southeast Asian pattern. Except perhaps in brain size, there is no evidence that the temporally intermediate Chinese fossils are intermediate in morphology between older and younger Indonesian fossils. In fact, northern Chinese calvaria are easier to exclude from the larger Asian H. erectus hypodigm than are the Ngandong fossils. The Chinese specimens differ from the others based on their narrower occipitals and frontals for their cranial size. The Chinese sample from Zhoukoudian alone is thus not a good proxy for the morphology and variation seen within Asian H. erectus. Both the Chinese and late Indonesian samples exhibit less variation than does the early Indonesian sample; this along with their shared morphological bauplan suggests a common origin and no more than subspecific differentiation. This shared morphology, despite regional differences, was likely maintained by the increasing intensity of multiple glaciations (and longer-lasting land bridge connections) between mainland and island Southeast Asia during the last million years.  相似文献   

6.
Independent maternal origin of Chinese swamp buffalo (Bubalus bubalis)   总被引:11,自引:0,他引:11  
Lei CZ  Zhang W  Chen H  Lu F  Liu RY  Yang XY  Zhang HC  Liu ZG  Yao LB  Lu ZF  Zhao ZL 《Animal genetics》2007,38(2):97-102
To obtain more knowledge on the origin and genetic diversity of the swamp buffalo (Bubalus bubalis) in China, the complete mitochondrial D-loop sequences of 119 samples representing seven native types were compared. Two mitochondrial DNA (mtDNA) lineages (lineages A and B) were determined for the Chinese swamp buffalo. Examination of the diversity patterns suggest that lineage A has undergone a population expansion event. Divergence of lineages A and B was estimated at 18,000 years ago. Combined analyses of mtDNA sequences from Chinese, Indian, Brazilian/Italian and Southeast Asian/Australian buffalo samples showed independent domestication events in the swamp buffalo from China and the river buffalo from the India subcontinent. The spread of swamp and river buffalo from China and India respectively to mainland Southeast Asia suggests that Southeast Asia is a hybrid zone for buffalo. Our data support the hypothesis of the evolution of domesticated swamp and river buffalo from ancestral swamp-like animals. These ancestral animals were extensively distributed across mainland Asia and most likely are represented today by the wild Asian buffalo (Bubalus arnee).  相似文献   

7.
Christmas Island is a remote Australian territory located close to the main Indonesian island of Java. Y-chromosome and mitochondrial DNA (mtDNA) markers were used to investigate the genetic structure of the population, which comprises communities of mixed ethnic origin. Analysis of 12 Y-chromosome biallelic polymorphisms revealed a high level of gene diversity and haplotype frequencies that were consistent with source populations in southern China and Southeast Asia. mtDNA hypervariable segment I (HVS-I) sequences displayed high levels of haplotype diversity and nucleotide diversity that were comparable to various Asian populations. Genetic distances revealed extremely low mtDNA differentiation among Christmas Islanders and Asian populations. This was supported by the relatively high proportion of sequence types shared among these populations. The most common mtDNA haplogroups were M* and B, followed by D and F, which are prevalent in East/Southeast Asia. Christmas Islanders of European descent were characterized by the Eurasian haplogroup R*, and a limited degree of admixture was observed. In general, analysis of the genetic data indicated population affinities to southern Chinese (in particular from the Yunnan Province) and Southeast Asia (Thailand, Malaysia, and Cambodia), which was consistent with historical records of settlement. The combined use of these different marker systems provides a useful and appropriate model for the study of contemporary populations derived from different ethnic origins.  相似文献   

8.
The dental crown morphology and size of 48 male West Nakanai, New Britain, Melanesians is described and compared with other Pacific and Asian dental samples. The West Nakanai dentition is like those of other Melanesians, much less like those of Polynesians and Micronesians, and very dissimilar to teeth of modern and Neolithic Southeast Asians. It is suggested that the origin of the modern Melanesian dental pattern (large but simplified teeth) was probably in Melanesia, not Southeast Asia as the orthodox view of a Hoabinhian-Australmelanesian relation claims.  相似文献   

9.
申效诚  张保石  张锋  刘新涛 《生态学报》2013,33(21):6795-6802
蜘蛛是一类种类繁多、数量巨大、分布广泛的捕食性生物。至2012年底,全世界共有蜘蛛43678种(包括亚种),隶属于112科3898属。科、属、种3个分类阶元的分布域非常悬殊,90%的种分布在一个界内,90%的科是跨界分布或全球分布。按行政区域,亚洲种类较多,欧洲较少,南极洲没有蜘蛛记录;按动物地理区域,古北界和新热带界较多,新北界较少。根据地理条件、生态条件和蜘蛛的分布状况,将全球陆地分为53个基础地理单元,用申效诚等新近提出的相似性通用公式和据此创立的多元相似性聚类分析方法,分别对属、种两级的分布进行分析,得到两个聚类结构相同、聚类关系合理的支序图,而且属级的支序图层次更为分明,在相似性水平为0.32时,53个基础地理单元聚为17个小单元群,在0,22水平上,又聚为8个大单元群。这些大、小单元群的组成单元地域相邻相连,生态条件相对一致,可以作为蜘蛛地理区划的界、亚界两个层级。和华莱士主要以哺乳动物建立的世界动物地理区划相比,主要差异是:1、古北界东、西两部分差异显著,可分设两界;2、新西兰和澳洲大陆相似性较低,可单独设界;3、新几内亚和太平洋岛屿与澳洲大陆的关系远于和东洋界的关系,华莱士线在两界间的作用似乎不存在; 4、新热带界的中美地区似乎属于新北界更为合适,并由此产生了南北美洲间的紧密联系;5、新北界与古北界的相似性关系弱于与新热带界的关系,全北界的概念几近消失。前两点差异可以从地球板块构造的变动得到解释,第3、5个差异已在植物和其它生物类群得到佐证,第4个差异尚不稳定,需要更多类群的比较与分析。使用多元相似性聚类分析方法对于如此典型的点状分布的生物类群和如此海量的数据,能够得到如此精细的,既符合地理学、统计学的逻辑,又符合生物学、生态学逻辑的定量分析结果,这在国内外都是首次成功尝试,其简便性和合理性将会促使在其它类群中的应用。  相似文献   

10.
The region of Tropical Southeast Asia and the Malay Archipelago is a very appealing area for research due to its outstanding biodiversity, being one of the most species-rich areas in the world with high levels of endemism, and due to its complex geological history. The high number of species in tribe Dissochaeteae (Melastomataceae) and their tendency to narrow endemism makethe tribe an ideal group for examining biogeographic patterns. We sampled 58 accessions spread over 42 accepted and two undescribed species of the Dissochaeteae. Two nuclear (ETS, ITS) and four chloroplast regions (ndhF, psbK-psbL, rbcL, rpl16) were used for divergence time estimation and ancestral area reconstruction. Results from the molecular dating analysis suggest that the diversity of Dissochaeteae in the Southeast Asian region resulted from a South American ancestor in the late Eocene. The ancestor of the Dissochaeteae might have migrated from South America to Southeast Asia via North America and then entered Eurasia over the North Atlantic land bridge during the Eocene. The origin and early diversification of the Dissochaeteae in Southeast Asia dates back to the middle Oligocene, and most of the genera originated during the Miocene. Indochina and Borneo are most likely the area of origin for the most recent common ancestor of the Dissochaeteae and for many of the early diverging clades of some genera within Southeast Asia.  相似文献   

11.
The molecular phylogeny of the globally distributed golden orb spider genus Nephila (Nephilidae) was reconstructed to infer its speciation history, with a focus on SE Asian/W Pacific species. Five Asian, two Australian, four African, and one American species were included in the phylogenetic analyses. Other species in Nephilidae, Araneidae, and Tetragnathidae were included to assess their relationships with the genus Nephila, and one species from Uloboridae was used as the outgroup. Phylogenetic trees were reconstructed from one nuclear (18S) and two mitochondrial (COI and 16S) markers. Our molecular phylogeny shows that the widely distributed Asian/Australian species, N. pilipes, and an African species, N. constricta, form a clade that is sister to all other Nephila species. Nested in this Nephila clade are one clade with tropical and subtropical/temperate Asian/Australian species, and the other containing African and American species. The estimated divergence times suggest that diversification events within Nephila occurred during mid-Miocene to Pliocene (16 Mya-2 Mya), and these time periods were characterized by cyclic global warming/cooling events. According to Dispersal and Vicariance Analysis (DIVA), the ancestral range of the Asian/Australian clade was tropical Asia, and the ancestral range of the genus Nephila was either tropical Asia or Africa. We conclude that the speciation of the Asian/Australian Nephila species was driven by Neogene global cyclic climate changes. However, further population level studies comparing diversification patterns of sister species are needed to determine the mode of speciation of these species.  相似文献   

12.
Factors governing the origin and evolution of continental biotas were investigated using an analysis of speciation patterns within the Australian avifauna. Phylogenetic relationships within seven lineages of birds were analyzed by numerical cladistic techniques applied to data sets of morphological characters. These relationships revealed extensive congruence among the spatial and temporal histories of lineages whose species are endemic to common areas of endemism. A general hypothesis is constructed to explain this congruence in which widespread biotas are postulated to have been partitioned into areas of endemism by the origin of geomorphological and/or ecological-climatic barriers. Congruence in these phylogenetic patterns of differentiation suggests the following historical pattern of interrelationships for areas of endemism along the northern and eastern coasts of Australia: (Kimberley Plateau + Arnhem Land) + ([New Guinea + Cape York Peninsula] + [Atherton Plateau + Eastern Coastal Rainforest]). Likewise, this study indicates that the arid interior avifauna was segregated into two closely related biotas (Eastern and Western Desert biotas) by the Eyrean Barrier. These biotas are, in turn, related to a more mesic avifauna that was itself subdivided into areas of endemism located in the Southwest and Southeast corners of the continent.  相似文献   

13.
Aims Insular Southeast Asia and adjacent regions are geographically complex, and were dramatically affected by both Pliocene and Pleistocene changes in climate, sea level and geology. These circumstances allow the testing of several biogeographical hypotheses regarding species distribution patterns and phylogeny. Avian species in this area present a challenge to biogeographers, as many are less hindered by barriers that may block the movements of other species. Widely distributed Southeast Asian avian lineages, of which there are many, have been generally neglected. Ficedula flycatchers are distributed across Eurasia, but are most diverse within southern Asia and Southeast Asian and Indo‐Australian islands. We tested the roles of vicariance, dispersal and the evolution of migratory behaviours as mechanisms of speciation within the Ficedula flycatchers, with a focus on species distributed in insular Southeast Asia. Methods Using a published molecular phylogeny of Ficedula flycatchers, we reconstructed ancestral geographical areas using dispersal vicariance analysis, weighted ancestral area analysis, and a maximum likelihood method. We evaluated the evolution of migratory behaviours using maximum likelihood ancestral character state reconstruction. Speciation timing estimates were calculated via local molecular clock methods. Results Ficedula originated in southern mainland Asia, c. 6.5 Ma. Our analyses indicate that two lineages within Ficedula independently and contemporaneously colonized insular Southeast Asia and Indo‐Australia, c. 5 Ma. The potential impact of vicariance due to rising sea levels is difficult to assess in these early colonization events because the ancestral areas to these clades are reconstructed as oceanic islands. Within each of these clades, inter‐island dispersal was critical to species’ diversification across oceanic and continental islands. Furthermore, Pliocene and Pleistocene climatic change may have caused the disjunct island distributions between several pairs of sister taxa. Both vicariance and dispersal shaped the distributions of continental species. Main conclusions This study presents the first evaluation, for Ficedula, of the importance of vicariance and dispersal in shaping distributions, particularly across insular Southeast Asia and Indo‐Australia. Although vicariant speciation may have initially separated the island clades from mainland ancestors, speciation within these clades was driven primarily by dispersal. Our results contribute to the emerging body of literature concluding that dynamic geological processes and climatic change throughout the Pliocene and Pleistocene have been important factors in faunal diversification across continental and oceanic islands.  相似文献   

14.
In a previous study of Southeast Asian genetic variation, we characterized mitochondrial DNAs (mtDNAs) from six populations through high-resolution restriction fragment length polymorphism (RFLP) analysis. Our analysis revealed that these Southeast Asian populations were genetically similar to each other, suggesting they had a common origin. However, other patterns of population associations also emerged. Haplotypes from a major founding haplogroup in Papua New Guinea were present in Malaysia; the Vietnamese and Malaysian aborigines (Orang Asli) had high frequencies of haplogroup F, which was also seen in most other Southeast Asian populations; and haplogroup B, defined by the Region V 9-base-pair deletion, was present throughout the region. In addition, the Malaysian and Sabah (Borneo) aborigine populations exhibited a number of unique mtDNA clusters that were not observed in other populations. Unfortunately, it has been difficult to compare these patterns of genetic diversity with those shown in subsequent studies of mtDNA variation in Southeast Asian populations because the latter have typically sequenced the first hypervariable segment (HVS-I) of the control region (CR) sequencing rather than used RFLP haplotyping to characterize the mtDNAs present in them. For this reason, we sequenced the HVS-I of Southeast Asian mtDNAs that had previously been subjected to RFLP analysis, and compared the resulting data with published information from other Southeast Asian and Oceanic groups. Our findings reveal broad patterns of mtDNA haplogroup distribution in Southeast Asia that may reflect different population expansion events in this region over the past 50,000-5,000 years.  相似文献   

15.
Modern genetic samples are commonly used to trace dog origins, which entails untested assumptions that village dogs reflect indigenous ancestry or that breed origins can be reliably traced to particular regions. We used high-resolution Y chromosome markers (SNP and STR) and mitochondrial DNA to analyze 495 village dogs/dingoes from the Middle East and Southeast Asia, along with 138 dogs from >35 modern breeds to 1) assess genetic divergence between Middle Eastern and Southeast Asian village dogs and their phylogenetic affinities to Australian dingoes and gray wolves (Canis lupus) and 2) compare the genetic affinities of modern breeds to regional indigenous village dog populations. The Y chromosome markers indicated that village dogs in the two regions corresponded to reciprocally monophyletic clades, reflecting several to many thousand years divergence, predating the Neolithic ages, and indicating long-indigenous roots to those regions. As expected, breeds of the Middle East and East Asia clustered within the respective regional village dog clade. Australian dingoes also clustered in the Southeast Asian clade. However, the European and American breeds clustered almost entirely within the Southeast Asian clade, even sharing many haplotypes, suggesting a substantial and recent influence of East Asian dogs in the creation of European breeds. Comparison to 818 published breed dog Y STR haplotypes confirmed this conclusion and indicated that some African breeds reflect another distinct patrilineal origin. The lower-resolution mtDNA marker consistently supported Y-chromosome results. Both marker types confirmed previous findings of higher genetic diversity in dogs from Southeast Asia than the Middle East. Our findings demonstrate the importance of village dogs as windows into the past and provide a reference against which ancient DNA can be used to further elucidate origins and spread of the domestic dog.  相似文献   

16.
Molecular anthropological studies of the populations in and around East Asia have resulted in the discovery that most of the Y-chromosome lineages of East Asians came from Southeast Asia. However, very few Southeast Asian populations had been investigated, and therefore, little was known about the purported migrations from Southeast Asia into East Asia and their roles in shaping the genetic structure of East Asian populations. Here, we present the Y-chromosome data from 1,652 individuals belonging to 47 Mon-Khmer (MK) and Hmong-Mien (HM) speaking populations that are distributed primarily across Southeast Asia and extend into East Asia. Haplogroup O3a3b-M7, which appears mainly in MK and HM, indicates a strong tie between the two groups. The short tandem repeat network of O3a3b-M7 displayed a hierarchical expansion structure (annual ring shape), with MK haplotypes being located at the original point, and the HM and the Tibeto-Burman haplotypes distributed further away from core of the network. Moreover, the East Asian dominant haplogroup O3a3c1-M117 shows a network structure similar to that of O3a3b-M7. These patterns indicate an early unidirectional diffusion from Southeast Asia into East Asia, which might have resulted from the genetic drift of East Asian ancestors carrying these two haplogroups through many small bottle-necks formed by the complicated landscape between Southeast Asia and East Asia. The ages of O3a3b-M7 and O3a3c1-M117 were estimated to be approximately 19 thousand years, followed by the emergence of the ancestors of HM lineages out of MK and the unidirectional northward migrations into East Asia.  相似文献   

17.
The musk shrew (Suncus murinus) is a small mammalian species belonging to Insectivora. It is widely distributed in Asia. To identify the genetic relationship among wild musk shrew populations and examine its migration route, we investigated the populations of Cambodia and Bhutan by using mitochondrial DNA restriction fragment length polymorphism analysis and compared them with other Asian populations previously described. Four haplotypes were detected in Cambodia and eight in Bhutan. A total of 53 haplotypes were detected in Asia and were classified largely into two groups, the Continental and Island types, based on a minimum spanning network. From the distribution of mtDNA types in wild musk shrews, three major population groups are identified in Asia: South Asia, Southeast Asia, and Malay. It is suggested that the Malay population group was a mix of South and Southeast Asian population groups and that this was a contact area of the two groups. In addition, other contact areas between the South and Southeast Asian groups exist in Myanmar, but unlike the Malay, the Myanmar area was the border of these groups.  相似文献   

18.
Five evolutionarily significant dental traits were identified from a B-square distance analysis of nine crown characters recorded for several populations of East Asia and Oceania. Intergroup variation in these traits distinguishes three major divisions of the Mongoloid dental complex: sundadonty, sinodonty, and the dental pattern of Australian Aborigines. The Australian crown features may be characterized as having high frequencies of evolutionarily conservative characters. Negritos, one of the probable representatives of indigenous inhabitants of Southeast Asia who may have shared a common ancestor with Australians, possess the more derived sundadont dental pattern. As far as the five crown traits treated here are concerned, Australian dental features may be described as conforming to a "proto-sundadont" dental pattern, applying Turner's terminology. This pattern may represent a microevolutionary step prior to the emergence of the sundadont and sinodont patterns.  相似文献   

19.
Aim Zoogeographic patterns in the Himalayas and their neighbouring Southeast Asian mountain ranges include elevational parapatry and ecological segregation, particularly among passerine bird species. We estimate timings of lineage splits among close relatives from the north Palaearctic, the Sino‐Himalayan mountain forests and from adjacent Southeast Asia. We also compare phylogeographic affinities and timing of radiation among members of avian communities from different elevational belts. Location East Asia. Methods We reconstructed molecular phylogenies based on a mitochondrial marker (cytochrome b) and multilocus data sets for seven passerine groups: Aegithalidae, Certhiidae (Certhia), Fringillidae (Pyrrhula), Paridae (Periparus), Phylloscopidae, Regulidae and Timaliidae (Garrulax sensu lato). Molecular dating was carried out using a Bayesian approach applying a relaxed clock in beast . Time estimates were inferred from three independent calibrations based on either a fixed mean substitution rate or fixed node ages. The biogeographic history of each group was reconstructed using a parsimony‐based approach. Results Passerine radiation in Southeast Asia can be divided into roughly three major phases of separation events. We infer that an initial Miocene radiation within the Southeast Asian region included invasions of (sub)tropical faunal elements from the Indo‐Burmese region to the Himalayan foothills and further successive invasions to Central Asia and Taiwan towards the early Pliocene. During two further Pliocene/Pleistocene phases, the subalpine mountain belt of the Sino‐Himalayas was initially invaded by boreal species with clear phylogenetic affinities to the north Palaearctic taiga belt. Most terminal splits between boreal Himalayan/Chinese sister taxa were dated to the Pleistocene. Main conclusions Extant patterns of elevational parapatry and faunal transition in the Sino‐Himalayas originated from successive invasions from different climatic regions. The initiation of Southeast Asian passerine diversification and colonization of the Himalayan foothills in the mid‐Miocene coincides with the postulated onset of Asian monsoon climate and the resulting floral and faunal turnovers. Patterns of elevational parapatry were established by southward invasions of boreal avifaunal elements to the subalpine Sino‐Himalayan forest belt that were strongly connected to climate cooling towards the end of the Pliocene. Current patterns of allopatry and parapatry in boreal species (groups) were shaped through Pleistocene forest fragmentation in East Asia.  相似文献   

20.
Distance analyses were applied to 11 craniofacial measurements recorded in samples from East and Southeast Asia, Australia, Melanesia, Polynesia, and Micronesia for the purpose of assessing the biological affinities and possible origins of these populations. A clear separation between Australomelanesians and other populations from East and Southeast Asia and the Pacific is evident. The craniofacial variations suggest that the generalized Asian populations (Negritos, Dayaks, Lesser Sunda Islands, etc.) represent at least part of the morphological background of not only the majority of present Southeast Asians, but also the Neolithic Jomon people and their lineage in Japan, Polynesians, and western Micronesians. The original craniofacial features of Southeast Asians may have occurred as the result of convergent microevolution due to similar environmental conditions such as tropical rain forest. This supports the local-evolution hypothesis for modern Southeast Asian craniofacial features. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号