首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R Warwick 《Acta anatomica》1986,126(2):136-140
Scientific knowledge is a continuum, and anatomy is a part of this subject to the same methods, principles, and the need of synthesis, both within anatomy and with other syntheses. Western science is the spearhead of human progress in understanding the universe around us and the world of Earth, from which we cannot escape. Science may also, in its power of synthesis, bringing together not only those who practise it but also uniting the nations. Excellent as are the applications of science in technology, knowledge has its own value in producing a synthesis of human awareness,--and also it may prevent us from ruining the Earth, which is our only possible home.  相似文献   

2.
Mikhaĭlova GA 《Biofizika》2001,46(5):922-926
A biophysical mechanism of interaction between the man and environment is proposed, which treats these components as two correlated oscillation contours with discrete resonance frequencies. The coincidence of biocurrent frequencies of the human brain with the resonance frequencies of the cavity formed by the Earth surface and the lower ionosphere boundary allows one to consider the influence of solar flares on the human organism in terms of variations of the cavity frequencies due to changes in the parameters of its upper wall.  相似文献   

3.
The discipline of sustainability science has emerged in response to concerns of natural and social scientists, policymakers, and lay people about whether the Earth can continue to support human population growth and economic prosperity. Yet, sustainability science has developed largely independently from and with little reference to key ecological principles that govern life on Earth. A macroecological perspective highlights three principles that should be integral to sustainability science: 1) physical conservation laws govern the flows of energy and materials between human systems and the environment, 2) smaller systems are connected by these flows to larger systems in which they are embedded, and 3) global constraints ultimately limit flows at smaller scales. Over the past few decades, decreasing per capita rates of consumption of petroleum, phosphate, agricultural land, fresh water, fish, and wood indicate that the growing human population has surpassed the capacity of the Earth to supply enough of these essential resources to sustain even the current population and level of socioeconomic development.  相似文献   

4.
Global change caused by human activity (e.g., land fragmentation, deforestation, pollution, anthropization of natural landscapes) has several effects on the biomes of the Earth, leading to alterations in the functioning of ecological systems. In this context, remote sensing represents an important tool to assess ecosystem changes, as it allows to collect a huge amount of data at different temporal and spatial resolutions concerning various compartments of the Earth system (land, ocean, atmosphere, and cryosphere). This information can be used to estimate precipitation patterns, global temperatures, snow cover and aerosol concentrations. The aim of this work is to exploit this wide availability of data to display the ecosystem changes using a new visualization method: the helical graphs. The helical graphs represent the change of a variable over time, reporting on the y-axis its moving averages and on the x-axis its rates of change.These new charts were tested on the NDVI index retrieved from Google Earth Engine (https://earthengine.google.com/) to visualize trends on selected biomes of the Earth (tropical and boreal forests). The results show that the helical graphs are a useful tool to highlight trends that might not be easily detected in a time series. In conclusion, the helical graphs can have a lot of application in ecology, especially exploiting the wide amount of data available thanks to the remote sensing.  相似文献   

5.
Continental aquatic systems from rivers to the coastal zone are considered within two perspectives: (i) as a major link between the atmosphere, pedosphere, biosphere and oceans within the Earth system with its Holocene dynamics, and (ii) as water and aquatic biota resources progressively used and transformed by humans. Human pressures have now reached a state where the continental aquatic systems can no longer be considered as being controlled by only Earth system processes, thus defining a new era, the Anthropocene. Riverine changes, now observed at the global scale, are described through a first set of syndromes (flood regulation, fragmentation, sediment imbalance, neo-arheism, salinization, chemical contamination, acidification, eutrophication and microbial contamination) with their related causes and symptoms. These syndromes have direct influences on water uses, either positive or negative. They also modify some Earth system key functions such as sediment, water, nutrient and carbon balances, greenhouse gas emissions and aquatic biodiversity. Evolution of river syndromes over the past 2000 years is complex: it depends upon the stages of regional human development and on natural conditions, as illustrated here for the chemical contamination syndrome. River damming, eutrophication and generalized decrease of river flow due to irrigation are some of the other global features of river changes. Future management of river systems should also consider these long-term impacts on the Earth system.  相似文献   

6.
Evaluating changes in land cover and their importance for global change   总被引:2,自引:0,他引:2  
During recent years, much progress has been made in integrating traditional natural science disciplines and in the developmnet of multidisciplinary models. This is crucial for an increased understanding of the dynamics of the Earth system. The domination of human activities in altering these dynamics is still increasing. However, few research projects have focused directly on understanding the motives for such intensification. It has only recently been acknowledged that improved understanding of human driving forces of global change is required to enable meaningful projections of plausible future states of the Earth system.  相似文献   

7.
采用原状土壤水稳性团聚体分离方法提取不同粒径的土壤颗粒,测定其有机碳及重金属元素Pb、Cd的含量,研究了退化红壤在植被恢复下表层(0~10cm和10~20cm)土壤颗粒中有机碳与重金属分布及其关系.这些土壤颗粒中有机碳和重金属元素Pb、Cd的含量范围分别介于7.5~15g/kg,11~20mg/kg和20~70μg/kg,且粒组间有显著差异.尽管所测组分的含量以<0.002mm粒组中最高,但2~0.25mm的粒组占其总量的50%左右,其次约20%存在于0.25~0.02mm粒组中.以土壤粒组中分量而言,有机碳和所测的重金属元素间有密切的依存关系.与荒地相比,植被恢复措施降低了各土层2~0.25mm粒组中Pb的含量和分量,但提高了0~10cm土层Cd的含量和分量.在所研究的几种处理中,玉米-包菜处理显著地促进了有机碳和重金属在各颗粒粒组中的均衡分布.因此,退化红壤植被恢复措施改变了上壤颗粒中有机碳和重金属的分布,因而可能影响着土壤环境中有机碳和重金属的形态及其活性.对于这些措施下土壤环境中有机碳和重金属的生物有效性机制尚需进一步研究.  相似文献   

8.
Ultraviolet (UV) radiation has been an important environmental parameter during the evolution of life on Earth, both in its role as a mutagen and as a selective agent. This was probably especially true during the time from 3.8 to 2.5 billion years ago, when atmospheric ozone levels were less than 1% of present levels. Early Mars may not have had an "ozone shield" either, and it never developed a significant one. Even though Mars is farther away from the Sun than the Earth, a substantial surficial UV flux is present on Mars today. But organisms respond to dose rate, and on Mars, like on Earth, organisms would be exposed to diurnal variations in UV flux. Here we present data on the effect of diurnal patterns of UV flux on microbial ecosystems in nature, with an emphasis on photosynthesis and DNA synthesis effects. These results indicate that diurnal patterns of metabolism occur in nature with a dip in photosynthesis and DNA synthesis in the afternoon, in part regulated by UV flux. Thus, diurnal patterns must be studied in order to understand the effect of UV radiation in nature. The results of this work are significant to the success of human missions to Mars for several reasons. For example, human missions must include photosynthetic organisms for food production and likely oxygen production. An evolutionary approach suggests which organisms might be best suited for high UV fluxes. The diurnal aspect of these studies is critical. Terraforming is a potential goal of Mars exploration, and it will require studies of the effect of Martian UV fluxes, including their diurnal changes, on terrestrial organisms. Such studies may suggest that diurnal changes in UV only require mitigation at some times of day or year.  相似文献   

9.
The human dimension of fire regimes on Earth   总被引:1,自引:0,他引:1  
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.  相似文献   

10.
The Iberian mountains are important biodiversity hotspots that face great immediate threats like other species-rich regions on Earth. Preservation of natural communities has historically been based on protecting them from physical disturbance. One of the most important causes of disturbance in natural communities today is human activity. Erysimum penyalarense is an endemic and endangered Mediterranean high-mountain herb. In this study, we explore the effect of environmental factors (microhabitat characteristics) and human activity on its abundance and distribution within the only remaining population of the species. Our results indicate that the species is much more abundant than previously thought. The only population known benefited from human disturbance but was negatively affected by animal disturbance and shrub encroachment. Therefore, the net effect of human activity on the species depends on the balance between the different activities carried out within its distribution range, suggesting that intermediate levels of disturbance could help preserve some endangered plants.  相似文献   

11.
Intertwined cycles of matters are proposed to be one of the essential characteristics of life. The increase in the amount of recycled matters within biological groups and the complication of the cycling network are considered to be the early development of life soon after its appearance on the Earth. From this point of view, the origin of a cell alone can not sufficiently be regarded as the origin of life. The origin of a cell must be followed by a formation of material cycling among cells, if the cells are to stay on the Earth long enough so that they could be called life.This biogeochemical viewpoint leads to a quantitative analysis of life activity. A formula is presented to exemplify the potential utility of the viewpoint. It is applied to analyses of possible early developments of life and of an impact of present human activity on the global carbon cycle. Further application of the viewpoint to a variety of biogeochemical, sociogeochemical, ecological, and environmental problems should eventually show whether there is some utility in this view.  相似文献   

12.
Abstract  A critical review of the health state of the Earth sciences is carried out for the world and for Italy, with special regard to both their traditional branches and those recently developed to address the preservation of the Italian environment and cultural heritage. Past and recent achievements by Lincei members who contributed to the progress of the Earth sciences vision to changing public opinion on the impact of natural and human actions on the environment are briefly discussed. The possible contribution of renovated “Rendiconti Lincei” to distributing internationally the present best achievements by Italian Earth scientists and by foreign scientists working on Italian soil is also analyzed. Keywords Geology, Mineralogy, Palaeontology, Applied Geosciences, Cultural Heritage Subject codes: U12007, G17002, G24009  相似文献   

13.
Prolonged skeletal muscle disuse, during space flights and on Earth, produces distinct adaptive changes in the neuromuscular system of human subjects. There is a significant decline in muscle mass and strength, exercise capacity, fatigue resistance, integrated EMG (IEMG) output and time-dependent alterations in the behavior of Hoffman (H) and deep tendon reflexes. The objective of this study was to examine the changes in excitability of segmental motoneuronal network and its influence upon gastrocnemius-soleus (G-S) function in healthy male and female subjects, who underwent either 6 degrees head-down bedrest (HDB) or unilateral cast-immobilization (CIM) for a period of 30 days.  相似文献   

14.
Applied Microbiology and Biotechnology - The recent recognition of the environmental prevalence of perchlorate and its discovery on Mars, Earth’s moon, and in meteorites, in addition to its...  相似文献   

15.
This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.  相似文献   

16.
Free-floating planets (FFPs) might originate either around a star or in solitary fashion. These bodies can retain molecular gases atmospheres which, upon cooling, have basal pressures of tens of bars or more. Pressure-induced opacity of these gases prevents such a body from eliminating its internal radioactive heat and its surface temperature can exceed for a long term the melting temperature of a life-supporting solvent. In this paper two non-aqueous but still polar solvents are considered: hydrogen sulfide and ammonia. Thermodynamic requirements to be fulfilled by a hypothetic gas constituent of a life-supporting FFP’s atmosphere are studied. The three gases analyzed here (nitrogen, methane and ethane) are candidates. We show that bodies with ammonia oceans are possible in interstellar space. This may happen on FFPs of (significantly) smaller or larger mass than the Earth. Generally, in case of FFP smaller in size than the Earth, the atmosphere exhibits a convective layer near the surface and a radiative layer at higher altitudes while the atmosphere of FFPs larger in size than Earth does not exhibit a convective layer. The atmosphere mass of a life-hosting FFP of Earth size is two or three orders of magnitude larger than the mass of Earth atmosphere. For FFPs larger than the Earth and specific values of surface pressure and temperature, there are conditions for condensation (in the ethane atmosphere). Some arguments induce the conclusion than the associated surface pressures and temperatures should be treated with caution as appropriate life conditions.  相似文献   

17.
The prebiotic synthesis of phosphorus-containing compounds-such as nucleotides and polynucleotides-would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the 'phosphorus problem' is no longer the stumbling block which it was once thought to be.  相似文献   

18.
Gravity is the one constant, ubiquitous force that has shaped life on Earth over its 4.8 billion years of evolution. But the sheer inescapability of Earth’s gravitational pull has meant that its influence on Earth’s organisms is difficult to study. Neutralization of the gravity vector (so‐called simulated microgravity) by random movement in three‐dimensional space is the best option for Earth‐based experiments, with spaceflight alone offering the possibility to assess the effects of an extremely reduced gravitational field (microgravity). However, the technical constraints associated with spaceflight introduce complications that can compromise the interpretation of microgravity experiments. It can be unclear whether changes detected in these experiments reflect additional spaceflight‐related stresses (temperature shifts, vibrational effects, radiation exposure, and so on) as opposed to the loss of gravitational force per se. In this issue, Herranz et al. (2010) report a careful study in which the effects of simulated and actual microgravity on gene expression in Drosophila melanogaster were compared and the effects of the flight‐associated stresses on the microgravity responses were investigated. A striking finding emerged. The additional stresses associated with the spaceflight experiment altered the response to microgravity. Despite controlling for the effects of these stresses/constraints, the group found that responses to microgravity are much stronger in the stressed/constrained background than in its absence. This interaction of gravity with other environmental influences is a novel finding with important implications for microgravity research and other situations where multiple stress factors are combined.  相似文献   

19.
The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth.  相似文献   

20.
In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human‐induced changes in terrestrial ecosystems that do not result in land‐cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one‐tenth of the ice‐free land surface is under intense human management, half under medium and one‐fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号