首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Eph receptor tyrosine kinases (Ephs) and their membrane anchored ephrin ligands (ephrins) form an essential cell-cell communication system that directs the positioning, adhesion and migration of cells and cell layers during development. While less prominent in normal adult tissues, there is evidence that up-regulated expression and de-regulated function of Ephs and ephrins in a large variety of human cancers may promote a more aggressive and metastatic tumour phenotype. However, in contrast to other RTKs, Ephs do not act as classical proto-oncogenes and do not effect cell proliferation or differentiation. Mounting evidence suggests that Eph receptors, through de-regulated re-emergence of their mode of action in the embryo may direct cell movements and positioning during metastasis, invasion and tumour angiogenesis. This review discusses these and other emerging roles of Eph receptors during oncogenesis.  相似文献   

3.
Eph receptors and ephrin ligands are widely expressed during embryonic development with well-defined functions in directing neuronal and vascular network formation. Over the last decade, evidence has mounted that Ephs and ephrins are also actively involved in prenatal and postnatal development of epithelial tissues. Their functions beyond developmental settings are starting to be recognized as well. The diverse functions of Eph/ephrin are largely related to the complementary expression pattern of the Eph receptors and corresponding ephrin ligands that are expressed in adjacent compartments, although overlapping expression pattern also exists in epithelial tissue. The interconnection between Ephs or ephrins and classical cell junctional molecules suggests they may function coordinately in maintaining epithelial structural integrity and homeostasis. This review will highlight cellular and molecular evidence in current literature that support a role of Eph/ephrin systems in regulating epithelial cell development and physiology.  相似文献   

4.
Eph receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication that regulate axon guidance, long-term potentiation, and stem cell development, among others. By now, many Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Since both the receptor and the ligand are membrane-bound, their interaction leads to the multimerization of both molecules to distinct clusters within their respective plasma membranes, resulting in the formation of discrete signaling centers. In addition, and unique to Eph receptors and ephrins, their interaction initiates bi-directional signaling cascades where information is transduced in the direction of both the receptor- and the ligand-bearing cells. The Ephs and the ephrins are divided into two subclasses, A and B, based on their affinities for each other and on sequence conservation. Crystal structures and other biophysical studies have indicated that isolated extracellular Eph and ephrin domains initially form high-affinity heterodimers around a hydrophobic loop of the ligand that is buried in a hydrophobic pocket on the surface of the receptor. The dimers can then further arrange by weaker interactions into higher-order Eph/ephrin clusters observed in vivo at the sites of cell-cell contact. Although the hetero-dimerization is a universal way to initiate signaling, other extracellular domains of Ephs are involved in the formation of higher-order clusters. The structures also show important differences defining the unique partner preferences of the two ligand and receptor subclasses, namely, how subclass specificity is determined both by individual interacting residues and by the precise architectural arrangement of ligands and receptors within the complexes.  相似文献   

5.
Pancreas development involves branching morphogenesis concomitantly to differentiation of endocrine, exocrine and ductal cell types from a single population of pancreatic precursors. These processes depend on many signals and factors that also control development of the central nervous system. In the latter, Eph receptors and their class-A (GPI-anchored) and class-B (transmembrane) ephrin ligands control cell migration and axon-pathfinding, help establish regional patterns and act as labels for cell positioning. This raised the question as to whether and where Ephs and ephrins are expressed during pancreas development. Here we have identified the Eph and ephrin genes that are expressed in mouse embryonic pancreas, as detected by RT-PCR analysis. In situ hybridization experiments showed that Ephs and ephrins are mainly expressed in the burgeoning structures of the epithelium which differentiate into exocrine acini. Binding experiments on whole pancreas demonstrated the presence of functional Eph receptors. They showed that EphBs are expressed by the pancreatic epithelium at embryonic day (e) 12.5 and that, from e14.5 on, Ephs of both classes are expressed by the pancreatic epithelium and then become restricted to developing acini. We conclude that specific members of the Eph/ephrin family are expressed in embryonic pancreas according to a dynamic temporal and regional pattern.  相似文献   

6.
Chen Y  Fu AK  Ip NY 《Cellular signalling》2012,24(3):606-611
Precise regulation of synapse formation, maintenance and plasticity is crucial for normal cognitive function, and synaptic failure has been suggested as one of the hallmarks of neurodegenerative diseases. In this review, we describe the recent progress in our understanding of how the receptor tyrosine kinase Ephs and their ligands ephrins regulate dendritic spine morphogenesis, synapse formation and maturation, as well as synaptic plasticity. In particular, we discuss the emerging evidence implicating that deregulation of Eph/ephrin signaling contributes to the aberrant synaptic functions associated with cognitive impairment in Alzheimer's disease. Understanding how Eph/ephrin regulates synaptic function may therefore provide new insights into the development of therapeutic agents against neurodegenerative diseases.  相似文献   

7.
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, and mediate many other cell-cell communication events. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. Recent structural, biochemical and cell-biological studies revealed that these assemblies are generated not only via Eph-ephrin interactions, but also via homotypic interactions between neighboring receptor molecules. In addition, Eph-Eph interactions mediate receptor pre-clustering, which ensures fast and efficient activation once ligands come into contact range. Here we summarize the current knowledge about the homotypic Eph-Eph interactions and discuss how they could modulate the initiation of Eph/ephrin signaling.  相似文献   

8.
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, and mediate many other cell-cell communication events. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. Recent structural, biochemical and cell-biological studies revealed that these assemblies are generated not only via Eph-ephrin interactions, but also via homotypic interactions between neighboring receptor molecules. In addition, Eph-Eph interactions mediate receptor pre-clustering, which ensures fast and efficient activation once ligands come into contact range. Here we summarize the current knowledge about the homotypic Eph-Eph interactions and discuss how they could modulate the initiation of Eph/ephrin signaling.  相似文献   

9.
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.  相似文献   

10.
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane‐associated molecules, particularly the Eph‐ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane‐associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell‐to‐cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph‐ and ephrin‐related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane‐associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane‐bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph‐ and ephrin‐related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies. Birth Defects Research (Part C) 108:65–84, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Proteases regulate a myriad of cell functions, both in normal and disease states. In addition to protein turnover, they regulate a range of signaling processes, including those mediated by Eph receptors and their ephrin ligands. A variety of proteases is reported to directly cleave Ephs and/or ephrins under different conditions, to promote receptor and/or ligand shedding, and regulate receptor/ligand internalisation and signaling. They also cleave other adhesion proteins in response to Eph-ephrin interactions, to indirectly facilitate Eph-mediated functions. Proteases thus contribute to Eph/ephrin mediated changes in cell-cell and cell-matrix interactions, in cell morphology and in cell migration and invasion, in a manner which appears to be tightly regulated by, and co-ordinated with, Eph signaling. This review summarizes the current literature describing the function and regulation of protease activities during Eph/ephrin-mediated cell signaling.  相似文献   

12.
Cell-cell signaling via Eph receptors and ephrins   总被引:3,自引:0,他引:3  
Eph receptors are the largest subfamily of receptor tyrosine kinases regulating cell shape, movements, and attachment. The interactions of the Ephs with their ephrin ligands are restricted to the sites of cell-cell contact since both molecules are membrane attached. This review summarizes recent advances in our understanding of the molecular mechanisms underlining the diverse functions of the molecules during development and in the adult organism. The unique properties of this signaling system that are of highest interest and have been the focus of intense investigations are as follows: (i) the signal is simultaneously transduced in both ligand-expressing cells and receptor-expressing cells, (ii) signaling via the same molecules can generate opposing cellular reactions depending on the context, and (iii) the Ephs and the ephrins are divided into two subclasses with promiscuous intrasubclass interactions, but rarely observed intersubclass interactions.  相似文献   

13.
Contact-dependent signaling between membrane-linked ligands and receptors such as the ephrins and Eph receptor tyrosine kinases controls a wide range of developmental and pathological processes. Paradoxically, many cell types coexpress both ligands and receptors, raising the question of how specific signaling readouts are achieved under these conditions. Here, we studied the signaling activities exerted by coexpressed EphA receptors and GPI-linked ephrin-A ligands in spinal motor neuron growth cones. We demonstrate that coexpressed Eph and ephrin proteins segregate laterally into distinct membrane domains from which they signal opposing effects on the growth cone: EphAs direct growth cone collapse/repulsion and ephrin-As signal motor axon growth/attraction. This subcellular arrangement of Eph-ephrin proteins enables axons to discriminate between cis- versus trans-configurations of ligand/receptor proteins, thereby allowing the utilization of both Ephs and ephrins as functional guidance receptors within the same neuronal growth cone.  相似文献   

14.
Eph receptor tyrosine kinases and their membrane-associated ligands, the ephrins, are essential regulators of axon guidance, cell migration, segmentation, and angiogenesis. There are two classes of vertebrate ephrin ligands which have distinct binding specificities for their cognate receptors. Multimerization of the ligands is required for receptor activation, and ephrin ligands themselves signal intracellularly upon binding Eph receptors. We have determined the structure of the extracellular domain of mouse ephrin-B2. The ephrin ectodomain is an eight-stranded beta barrel with topological similarity to plant nodulins and phytocyanins. Based on the structure, we have identified potential surface determinants of Eph/ephrin binding specificity and a ligand dimerization region. The high sequence similarity among ephrin ectodomains indicates that all ephrins may be modeled upon the ephrin-B2 structure presented here.  相似文献   

15.
The Eph receptors and their ligands, the ephrins, are thought to act at points of close cell-cell contact to elicit bi-directional signaling in receptor and ligand expressing cells. However, when cultured in vitro, some A-type ephrins are released from the cell surface and it is unclear if these soluble ephrins participate in Eph receptor activation. We show that soluble ephrin A5 is subject to oligomerization. Ephrins A1 and A5 are substrates for a cross-linking enzyme, tissue transglutaminase, which mediates the formation of oligomeric ephrin. Transglutaminase-cross-linked ephrin binds to A-type Eph receptors, stimulates Eph kinase activity, and promotes invasion and migration of HeLa cells. Transglutaminase-mediated oligomerization of soluble ephrin potentially represents a novel mechanism of forward signaling through Eph receptors and may extend the influence of A-type ephrins beyond cell contact mediated signaling.  相似文献   

16.
Eph receptors comprise the largest family of receptor tyrosine kinases. They are classified into an A family and a B family on the basis of the characteristic properties of the corresponding ephrin ligands which are either GPI-anchored peripheral membrane molecules (A class ephrins) or transmembrane molecules (B class ephrins). Eph receptors and ephrin ligands were originally identified as neuronal pathfinding molecules. Yet, gene targeting experiments in mice have identified the EphB/ephrinB system as critical and rate-limiting determinant of arterio-venous differentiation during embryonic vascular development. Identification of vascular EphB/ephrinB functions has in the last few years stimulated two emerging fields of vascular biology research, namely (1) the molecular analysis of the structural and functional mechanisms of arterio-venous differentiation, and (2) the molecular study of the commonalities between vascular and neuronal guidance and patterning mechanisms. This review summarizes the current understanding of vascular Eph receptor and ephrin ligand functions and provides an overview of emerging roles of the Eph/ephrin system in controlling tumor and vascular functions during tumorigenesis and tumor progression.  相似文献   

17.
18.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

19.
20.
Eph receptors and their ligands ephrins comprise a complex signaling system with diverse functions that span a wide range of tissues and developmental stages. The variety of Eph receptor functions stems from their ability to mediate bidirectional signaling through trans-cellular Eph/ephrin interactions. Initially thought to act by directing repulsion between cells, Ephs have also been demonstrated to induce and maintain cell adhesive responses at excitatory synapses in the central nervous system. EphB receptors are essential to the development and maintenance of dendritic spines, which accommodate the postsynaptic sites of most glutamatergic excitatory synapses in the brain. Functions of EphB receptors are not limited to control of the actin cytoskeleton in dendritic spines, as EphB receptors are also involved in the formation of functional synaptic specializations through the regulation of glutamate receptor trafficking and functions. In addition, EphB receptors have recently been linked to the pathophysiology of Alzheimer's disease and neuropathic pain, thus becoming promising targets for therapeutic interventions. In this review, we discuss recent findings on EphB receptor functions in synapses, as well as the mechanisms of bidirectional trans-synaptic ephrin-B/EphB receptor signaling that shape dendritic spines and influence post-synaptic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号