首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we present the characterization of a trypanosomatid nucleoside diphosphate kinase (TcNDPK1) exhibiting nuclease activity. This is the first identification of a NDPK with this property in trypanosomatid organisms. The recombinant TcNDPK1 protein cleaves not only linear DNA, but also supercoiled plasmid DNA. Additionally, TcNDPK1 is capable of degrading Trypanosoma cruzi genomic DNA. ATP or ADP did not affect the nuclease activity, while the absence of Mg2+ completely inhibits this activity. NDPK and nuclease activities were inhibited at the same temperature, suggesting the presence of related catalytic sites. Furthermore, phenogram analysis showed that TcNDPK1 is close to Drosophila melanogaster and human NDPKs. The unspecific nuclease activity could suggest a participation in cellular processes such as programmed cell death.  相似文献   

2.
Dorion S  Matton DP  Rivoal J 《Planta》2006,224(1):108-124
A cDNA encoding Solanum chacoense cytosolic NDPK (NDPK1, EC 2.7.4.6) was isolated. The open reading frame encoded a 148 amino acid protein that shares homology with other cytosolic NDPKs including a conserved N-terminal domain. S. chacoense NDPK1 was expressed in Escherichia coli as a 6×His-tagged protein and purified by affinity chromatography. The recombinant protein exhibited a pattern of abortive complex formation suggesting that the enzyme is strongly regulated by the NTP/NDP ratio. A polyclonal antibody generated against recombinant NDPK1 was specific for the cytosolic isoform in Solanum tuberosum as shown from immunoprecipitation experiments and immunoblot analysis of chloroplasts and mitochondria preparations. NDPK activity and NDPK1 protein were found at different levels in various vegetative and reproductive tissues. DEAE fractogel analyses of NDPK activity in root tips, leaves, tubers and cell cultures suggest that NDPK1 constitutes the bulk of extractable NDPK activity in all these organs. NDPK activity and NDPK1 protein levels raised during the exponential growth phase of potato cell cultures whereas no rise in activity or NDPK1 protein was observed when sucrose concentration in the culture was manipulated to limit growth. Activity measurements, immunoblot analysis as well as immunolocalization experiments performed on potato root tips and shoot apical buds demonstrated that NDPK1 was predominantly localized in the meristematic zones and provascular tissues of the apical regions. These data suggest that NDPK1 plays a specific role in the supply of UTP during early growth of plant meristematic and provascular tissues.  相似文献   

3.
The plant nucleoside diphosphate kinase (NDPK, EC 2.7.4.6) gene family consists of three groups whose gene products are found in different subcellular locations. In this study we discuss the evolutionary history, localization and expression of the NDPK genes, addressing the question of functional specialization of the different NDPKs. A phylogenetic analysis revealed that the three NDPK isoforms were present already in the last common ancestor of vascular plants and mosses. Our data also imply that the NDPK3 genes possess a higher degree of conservation than the NDPK1 and NDPK2 genes. The expression levels of the different NDPKs in Arabidopsis thaliana inflorescences, leaves and roots were evaluated using quantitative PCR as well as in silico methods. This analysis showed that NDPK1 is the most highly expressed NDPK gene in all the studied tissues. NDPK3a has the second highest NDPK expression, while NDPK3b is expressed to a very low extent. However, expression of NDPK3b is elevated in inflorescence tissue. In situ hybridization experiments performed on inflorescences showed NDPK3a expression in actively dividing cells. NDPK3b expression was observed during later stages of flower development, specifically in the tapetum, ovules and petals. Additionally, we show that an NDPK3 protein is able to direct the green fluorescent protein to both mitochondria and chloroplasts using transient expression in leaf protoplasts. The dual localisation of NDPK3 was confirmed by Western blot, which also demonstrated that the majority of the NDPK3 protein is found in the mitochondria.  相似文献   

4.
5.
β-adrenoceptors (βAR) play a central role in the regulation of cAMP synthesis and cardiac contractility. Nucleoside diphosphate kinase B (NDPK B) regulates cAMP signalling by complex formation with Gβγ dimers thereby activating and stabilizing heterotrimeric Gs proteins, key transducer of βAR signals into the cell. Here, we explored the requirement of NDPK B for basal and βAR-stimulated cAMP synthesis and analysed the underlying mechanisms by comparing wild-type NDPK B (WT) and its catalytically inactive H118N mutant. Stable overexpression of both WT- and H118N-NDPK B in cardiomyocyte derived H10 cells increased the plasma membrane content of Gs and caveolin-1 and thus enhanced the isoproterenol (ISO)-stimulated cAMP-synthesis by about 2-fold. Conversely, the loss of NDPK B in embryonic fibroblasts from NDPK A/B-depleted mice was associated with a severe reduction in membranous Gs protein and carveolin-1 content causing a marked decrease in basal and ISO-induced cAMP formation. Re-expression of NDPK B, but not of NDPK A, was able to rescue this phenotype. Both, re-expression of WT- and H118N-NDPK B induced the re-appearance of Gs and caveolin-1 at the plasma membrane to a similar extent. Accordingly, WT- and H118N-NDPK B similarly enhanced ISO-induced cAMP formation. In contrast, the catalytically inactive H118N-NDPK B was less potent and less effective in rescuing basal cAMP production. Identical results were obtained in neonatal rat cardiac myocytes after siRNA-induced knockdown and adenoviral re-expression of NDPK B.Our data reveal that NDPK B regulates Gs function by two different mechanisms. The complex formation of NDPK B with Gs is required for the stabilization of the G protein content at the plasma membrane. In addition, the NDPK B-dependent phosphotransfer reaction, which requires the catalytic activity, specifically allows a receptor-independent, basal Gs activation.  相似文献   

6.
7.
Shen Y  Kim JI  Song PS 《Biochemistry》2006,45(6):1946-1949
Arabidopsis nucleoside diphosphate kinase 2 (NDPK2) is a component in the phytochrome-mediated light signaling. In the present study, its autophosphorylation was investigated. Acid-stable and alkali-stable phosphorylated residues were analyzed under two different conditions. Results revealed that NDPK2 is phosphorylated only on its active histidine residue His197 and the presence of serine/threonine phosphorylation is an experimental artifact due to the harsh condition applied in the treatment of the phosphorylated protein sample. To resolve the controversy of whether serine/threonine phosphorylation of NDPK occurs as has been suggested by other NDPK studies, NDPK2 putative phosphorylation site mutants were generated and examined. No serine/threonine phosphorylation was identified in NDPK2 or implicated in its enzymatic activity. Further studies indicated that the low enzymatic activity and autophosphorylation level of NDPK2 mutant S199A are shown to be due to a damaged H-bonding with the active histidine residue His197 in the nucleotide-binding pocket. In addition, NDPK2 Kpn loop mutant T182A was found to possess an extremely low enzymatic activity and almost no autophosphorylation, suggesting the importance of the oligomeric states of NDPK2 in NDPK2 functioning.  相似文献   

8.
9.
Song EJ  Kim YS  Chung JY  Kim E  Chae SK  Lee KJ 《Biochemistry》2000,39(33):10090-10097
Nucleoside diphosphate kinase (NDPK, Nm23) has been implicated as a multifunctional protein. However, the regulatory mechanism of NDPK is poorly understood. We have examined the modification of NDPK in oxidative stresses. We found that oxidative stresses including diamide and H(2)O(2) treatment cause disulfide cross-linking of NDPK inside cells. This cross-linking was reversible in response to mild oxidative stress, and irreversible to strong stress. This suggests that disulfide cross-linked NDPK may be a possible mechanism in the modification of cellular regulation. To confirm this idea, oxidative modification of NDPK has been performed in vitro using purified human NDPK H(2)O(2) inactivated the nucleoside diphosphate (NDP) kinase activity of NDPK by producing intermolecular disulfide bonds. Disulfide cross-linking of NDPK also dissociated the native hexameric structure into a dimeric form. The oxidation sites were identified by the analysis of tryptic peptides of oxidized NDPK, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Intermolecular cross-linking between Cys109-Cys109, which is highly possible based on the X-ray crystal structure of NDPK-A, and oxidations of four methionine residues were identified in H(2)O(2)-treated NDPK. This cross-linkng was confirmed using mutant C109A (NDPK-A(C109A)) which had similar enzymatic activity as a wild NDPK-A. Mutant NDPK-A(C109A) was not cross-linked and was not easily denatured by the oxidant. Therefore, enzymatic activity and the quaternary structure of NDPK appear to be regulated by cross-linking with oxidant. These findings suggest one of the regulatory mechanisms of NDPK in various cellular processes.  相似文献   

10.
AMP-activated protein kinase (AMPK) is a key energy sensor that regulates metabolism to maintain cellular energy balance. AMPK activation has also been proposed to mimic benefits of caloric restriction and exercise. Therefore, identifying downstream AMPK targets could elucidate new mechanisms for maintaining cellular energy homeostasis. We identified the phosphotransferase nucleoside diphosphate kinase (NDPK), which maintains pools of nucleotides, as a direct AMPK target through the use of two-dimensional differential in-gel electrophoresis. Furthermore, we mapped the AMPK/NDPK phosphorylation site (serine 120) as a functionally potent enzymatic "off switch" both in vivo and in vitro. Because ATP is usually the most abundant cellular nucleotide, NDPK would normally consume ATP, whereas AMPK would inhibit NDPK to conserve energy. It is intriguing that serine 120 is mutated in advanced neuroblastoma, which suggests a mechanism by which NDPK in neuroblastoma can no longer be inhibited by AMPK-mediated phosphorylation. This novel placement of AMPK upstream and directly regulating NDPK activity has widespread implications for cellular energy/nucleotide balance, and we demonstrate in vivo that increased NDPK activity leads to susceptibility to energy deprivation-induced death.  相似文献   

11.
NDPK2 as a signal transducer in the phytochrome-mediated light signaling   总被引:3,自引:0,他引:3  
Nucleoside-diphosphate kinase (NDPK) 2 in Arabidopsis has been identified as a phytochrome-interacting protein by using the C-terminal domain of phytochrome A (PhyA) as the bait in yeast two-hybrid screening. The far-red light-absorbing form of phytochrome (Pfr) A stimulates NDPK2 gamma-phosphate exchange activity in vitro. To better understand the multiple functions of NDPK and its role in phytochrome-mediated signaling, we characterized the interaction between phytochrome and NDPK2. Domain studies revealed that PER-ARNT-SIM domain A in the C-terminal domain of phytochrome is the binding site for NDPK2. Additionally, phytochrome recognizes both the NDPK2 C-terminal fragment and the NDPK2 hexameric structure to fulfill its binding. To illustrate the mechanism of how the Pfr form of phytochrome stimulates NDPK2, His-197-surrounding residue mutants were made and tested. Results suggested that the H-bonding with His-197 inside the nucleotide-binding pocket is critical for NDPK2 functioning. The pH dependence profiles of NDPK2 indicated that mutants with different activities from the wild type have different pK(a) values of His-197 and that NDPK2 hyperactive mutants possess lower pK(a) values. Because a lower pK(a) value of His-197 accelerates NDPK2 autophosphorylation and the phospho-transfer between the phosphorylated NDPK2 and its kinase substrate, we concluded that the Pfr form of phytochrome stimulates NDPK2 by lowering the pK(a) value of His-197.  相似文献   

12.
Data on localization of nucleoside diphosphate kinase (NDPK) in the outer mitochondrial compartment are contradictory. We have demonstrated that repeated quintuple wash of a mitochondrial pellet (protein concentration is about 2 mg/ml) solubilized only 60% of total NDPK activity. Since no release of adenylate kinase, the marker enzyme of the intermembrane space, was observed, it was concluded that the solubilized NDPK activity was associated with the outer surface of the outer mitochondrial membrane. Treatment of mitochondria with digitonin solutions in low (sucrose, mannitol) or high (KCl) ionic strength media revealed that solubilization of remaining NDPK activity basically coincided with the solubilization curve of monoamine oxidase, the marker enzyme of the outer mitochondrial membrane, but differed from solubilization behavior of adenylate kinase and malate dehydrogenase. We concluded that the remaining NDPK activity was also associated with the outer mitochondrial membrane and electrostatic interactions were not essential for NDPK binding to mitochondrial membranes. Results of polarographic determination of remaining adenylate kinase and NDPK activities of mitochondria incubated in ice for different time intervals and subjected to subsequent centrifugation suggest that all NDPK activity of the outer compartment of rat liver mitochondria is associated with the outer surface of the outer mitochondrial membrane. We suggest the existence of at least three NDPK fractions. They represent 70, 15, and 15% of total NDPK activity of the outer compartment and differ by tightness of membrane binding.  相似文献   

13.
Formation of GTP by nucleoside diphosphate kinase (NDPK) can contribute to G protein activation in vitro. To study the effect of NDPK on G protein activity in living cells, the NDPK isoforms A and B were stably expressed in H10 cells, a cell line derived from neonatal rat cardiomyocytes. Overexpression of either NDPK isoform had no effect on cellular GTP and ATP levels, basal cAMP levels, basal adenylyl cyclase activity, and the expression of G(s)alpha and G(i)alpha proteins. However, co-expression of G(s)alpha led to an increase in cAMP synthesis that was largely enhanced by the expression of NDPK B, but not NDPK A, and that was confirmed by direct measurement of adenylyl cyclase activity. Cells expressing an inactive NDPK B mutant (H118N) exhibited a decreased cAMP formation in response to G(s)alpha. Co-immunoprecipitation studies demonstrated a complex formation of the NDPK with Gbetagamma dimers. The overexpression of NDPK B, but not its inactive mutant or NDPK A, increased the phosphorylation of Gbeta subunits. In summary, our data demonstrate a specific NDPK B-mediated activation of a G protein in intact cells, which is apparently caused by formation of NDPK B.Gbetagamma complexes and which appears to contribute to the receptor-independent activation of heterotrimeric G proteins.  相似文献   

14.
In brain, nucleoside diphosphate kinase (NDPK) and its coding gene, nm23, have been implicated to modulate neuronal cell proliferation, differentiation, and neurite outgrowth. However, a role of NDPK in neurodegenerative diseases has not been reported yet. Using proteomics techniques, we evaluated the protein levels of NDPK-A in seven brain regions from patients with Alzheimer's disease (AD) and Down syndrome (DS) showing AD-like neuropathology. NDPK-A was significantly decreased in brain regions (frontal, occipital, and parietal cortices) of both disorders. Due to the limitation of brain samples, the activity of NDPK was measured in three brain regions (frontal cortex, temporal cortex, and cerebellum). The specific activity of NDPK was significantly decreased in AD (frontal cortex) and DS (frontal and temporal cortices). Since NDPK-B could also drive the activity of NDPK, protein expression levels of both NDPK-A and NDPK-B were studied in frontal cortex by Western blot analysis. NDPK-A was significantly decreased in AD, which was consistent with the results of proteomics. However, NDPK-A was slightly decreased in DS and protein expression levels of NDPK-B in both DS and AD were moderately decreased, without reaching statistical significance. We propose that oxidative modification of NDPK could lead to the decreased activity of NDPK and, subsequently, influence several neuronal functions in neurodegenerative diseases as multifunctional enzyme through several mechanisms.  相似文献   

15.
The modulation of three signal transduction elements: arrestin-like proteins, G proteins and NDPK was assessed during the induction of wheat (Triticum aestivum L.) somatic embryogenesis under different auxin (2,4-D) and light conditions. Immunological approaches using specific antibodies, kinase activity measurement and [α-32P]-GTP-binding assay were performed. The induction of embryogenic capacity by 2,4-D was characterised both by the increased expression of the classical 40-kDa arrestin-like form and by the appearance of an additional arrestin-like protein of 29 kDa. The 40-kDa arrestin-like soluble form was unaffected by light stimuli. On the other hand, the 29-kDa arrestin-like form, specific of the embryogenic tissue culture, was found to be light regulated. From embryogenic cultures grown under light or dark, different soluble G proteins from 22 to 48 kDa were detected by probing polyvinylidene fluoride (PVDF) blots with [α-32P]-GTP. In addition, in the microsomal fraction from light-grown cultures, a polypeptide of 20 kDa was heavily labelled. Under light conditions, cell proliferation induced by 2,4-D stimulated the appearance of a 32-kDa nucleoside diphosphate kinase (NDPK) form in addition to the classical 16–18-kDa protein, without a significant change in the NDPK activity. The modulated expression of plant arrestin-like proteins, G proteins and NDPK molecules in response to auxin and light support the view that they play key roles in signalling cascades participating in plant development.  相似文献   

16.
During incubation of a constant volume of rat liver cytosol with an increasing quantity of mitochondrial protein in the presence of 3.3 mM MgCl2, the binding of nucleoside diphosphate kinase (NDPK) from the cytosol to mitochondrial membranes is described by a saturation curve. The highest bound NDPK activity accounts for less than 9% of the added activity. Analysis of the results suggests that only one NDPK isozyme is bound to the membranes. Western blotting showed it to be NDPK α, a homolog of human NDPK-B. Substrates of NDPK, hexokinase, and glycerol kinase, as well as N,N’-dicyclohexylcarbodiimide and palmitate, did not influence the association of NDPK with mitochondrial membranes. We conclude that the sites of NDPK binding to the outer mitochondrial membrane are not identical to those of hexokinase and glycerol kinase.  相似文献   

17.
18.
19.
We describe a method for the detection and quantification of nucleoside diphosphate kinase (NDPK). NDPK catalyzes the transfer of the gamma-phosphate of cytidine 5'-triphosphate on uridine 5'-diphosphate (UDP) to produce uridine 5'-triphosphate (UTP). The method uses a nonradioactive coupled enzyme assay in which UTP produced by NDPK is utilized by UDP-glucose pyrophosphorylase. This latter enzyme synthesizes UDP-glucose and inorganic phosphate in the presence of glucose 1-phosphate. UDP-glucose is detected at 260 nm after separation of the reaction mixture by high-performance liquid chromatography (HPLC) on a strong anion-exchange column. The assay is reliable, specific, and linear with respect to time and enzyme amount. Using 15 min incubation time, the method allows detection of NDPK activity below 10 pmol/min. It can be used to analyze kinetic behavior and to quantify NDPK from a wide variety of animal, microbial, and plant sources. It also provides an alternative to radiometric assays and an improvement on pyruvate kinase-linked spectrophotometric assays, which can be hampered by pigments present in crude extracts. Furthermore, we show that the HPLC method developed here can be directly used to assay enzymes for which UDP-glucose is a product.  相似文献   

20.
The human HD domain protein SAMHD1 is implicated in the Aicardi-Goutières autoimmune syndrome and in the restriction of HIV-1 replication in myeloid cells. Recently, this protein has been shown to possess dNTP triphosphatase activity, which is proposed to inhibit HIV-1 replication and the autoimmune response by hydrolyzing cellular dNTPs. Here, we show that the purified full-length human SAMHD1 protein also possesses metal-dependent 3′→5′ exonuclease activity against single-stranded DNAs and RNAs in vitro. In double-stranded substrates, this protein preferentially cleaved 3′-overhangs and RNA in blunt-ended DNA/RNA duplexes. Full-length SAMHD1 also exhibited strong DNA and RNA binding to substrates with complex secondary structures. Both nuclease and dNTP triphosphatase activities of SAMHD1 are associated with its HD domain, but the SAM domain is required for maximal activity and nucleic acid binding. The nuclease activity of SAMHD1 could represent an additional mechanism contributing to HIV-1 restriction and suppression of the autoimmune response through direct cleavage of viral and endogenous nucleic acids. In addition, we demonstrated the presence of dGTP triphosphohydrolase and nuclease activities in several microbial HD domain proteins, suggesting that these proteins might contribute to antiviral defense in prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号