首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated some effects of prostaglandin E1 on the metabolism of rat parathyroid glands using a culture system containing basal Eagle's medium supplemented with 5–10% heat-inactivated rat serum. Rat parathyroid glands incorporate [3H]fucose and 14C-labeled amino acids into cellular glycoproteins and secrete some of these into the culture medium. Gel filtration chromatography separates these glycoproteins into three classes, the smallest of which (peak 3) is secreted with immunoreactive parathyroid hormone. In cultures of 48 h, prostaglandin E1 (1 μg/ml) specifically inhibits the secretion of peak 3 and of parathyroid hormone but has no effect on the incorporation of [3H]-fucose, 14C-labeled amino acids, or [3H]uridine into parathyroid glands. Cytochalasin B inhibits the secretion of parathyroid hormone and the incroporation of isotopic fucose and amino acids. Cortisol stimulates incorporation of [3H]fucose and the secretion of parathyroid hormone even in the presence of inhibitory doses of prostaglandin E1. It is concluded that, in organ culture, prostaglandin E1 inhibits the secretion of parathyroid hormone and of a specific glycoprotein the function of which may be related to the secretion of the hormone.  相似文献   

2.
Isoproterenol induces both the secretion of protein and the stimulation of DNA synthesis and growth in rat salivary glands.The specific binding of the labelled beta-adrenergic antagonist [3H]dihydroalprenolol has been used to measure the number of beta-adrenergic receptors in rat parotid glands during isoproterenol-induced growth. Isoproterenol-enlarged glands display no change in the specific binding capacity per gland for [3H]-dihydroalprenolol compared with normal tissue.Catecholamine sensitive adenylate cyclase activity varies independently of the number of specific [3H]dihydroalprenolol binding sites during isoproterenol-induced growth.Previously-described differences in optimal isoproterenol doses which produce protein secretion and stimulation of DNA synthesis may reflect different responses to various rates of receptor occupancy, or may be due to the presence of more than one type of beta-adrenergic receptor.  相似文献   

3.
Chronic administration of DL-isoproterenol, a β-adrenergic agonist, to male Sprague-Dawley rats increased submandibular gland weights by 3 to 4-fold. This increase resulted from a combination of hyperplasia and hypertrophy of secretory cells. Possible effects of this drug regimen on submandibular gland muscarinic acetylcholine receptors were examined by analysis of the binding of the cholinergic antagonist, L-quinuclidinyl [3H]benzilate, to receptors in gland homogenates. Parallel investigations of receptors in exorbital lacrimal glands, an organ that is not grossly affected by chronic isoproterenol treatment, were also carried out. [3H]QNB bound to submandibular receptors with a Kd of 37.8±6.3 pM in control rats and 41.0±4.0 pM in isoproterenol-treated animals, a non-significant difference (P > 0.05). In contrast, the maximal binding level (Bmax) is isoproterenol-treated rats, 1.52±0.10 fmol/μg DNA, was depressed by approx. 30% (P<0.05) from that of 2.22±0.16 fmol/μg DNA in control animals. In lacrimal glands, both Kd (61.3±5.3 vs. 53.2±4.0 pM) and Bmax (1.74±0.24 vs. 1.78±0.17 fmol/μg DNA) were unchanged by isoproterenol treatment. The affinity of glandular muscarinic receptors for cholinergic agonists was also examined by competition experiments using carbachol. This agonist inhibited [3H]QNB binding to receptors in homogenates from both glands in a dose-dependent fashion. Inhibition constant (Ki) for this interaction were similar in control and isoproterenol-treated lacrimal glands; 53.6±5.4 μM and 66.6±7.9 μM, respectively (P>0.05). In submandibular glands, isoproterenol treatment elicited a highly significant (P < 0.01) shift in Ki from 17.3±1.4 μM to 68.3±5.2 μM. These results demonstrate that chronic administration of isoproterenol to rats results in a reduction in receptor numbers and a decrease in their sensitivity to cholinergic agonists in submandibular, but not lacrimal, glands.  相似文献   

4.
In rat lacrimal gland, cholinergic, α- or β-adrenergic or methylxanthine stimulations of protein secretion are extracellular calcium dependent. 10 μM trifluoperazine (TFP) inhibited only cholinergic and α-adrenergic stimulations. Half maximal effect was observed at 30 μM, with all inducers except norepinephrine (3 μM). 10 or 30 μM TFP also suppressed the decrease of L-[3H]leucine incorporation into protein due to carbamylcholine. 100 μM TFP inhibited protein secretion and L-[3H]leucine incorporation. 500 μM TFP promoted cell lysis. It is suggested that: (a) at 100 μM TFP, inhibition is not specific for protein secretion; (b) at 30 μM TFP, inhibition could be related to a role of calmodulin in the secretory regulation process.  相似文献   

5.
Lacrimal glands provide the important function of lubricating and protecting the ocular surface. Failure of proper lacrimal gland function results in a number of debilitating dry eye diseases. Lacrimal glands secrete lipids, mucins, proteins, salts and water and these secretions are at least partially regulated by neurotransmitter-mediated cell signaling. The predominant signaling mechanism for lacrimal secretion involves activation of phospholipase C, generation of the Ca2+-mobilizing messenger, IP3, and release of Ca2+ stored in the endoplasmic reticulum. The loss of Ca2+ from the endoplasmic reticulum then triggers a process known as store-operated Ca2+ entry, involving a Ca2+ sensor in the endoplasmic reticulum, STIM1, which activates plasma membrane store-operated channels comprised of Orai subunits. Recent studies with deletions of the channel subunit, Orai1, confirm the important role of SOCE in both fluid and protein secretion in lacrimal glands, both in vivo and in vitro.  相似文献   

6.
A group of glycolipid toxins, corynetoxin (CT), isolated from parasitized annual ryegrass, was shown to suppress the synthesis of both albumin and transferrin by cultured fetal rat hepatocytes. Based on [3H]leucine incorporation, inhibition of transferrin synthesis was greater than that of both albumin and total protein synthesis. As a result, the secretion of albumin and transferrin was decreased. The incorporation of [3H]N-AcGlc into cellular glycoproteins was only marginally affected by CT, although a dramatic reduction was observed with respect to the secreted proteins. Transferrin secreted into the culture medium was substantially non-glycosylated, judging by the absence of [3H]N-AcGlc. These studies suggested that the toxin preferentially affects the synthesis, and hence the secretion of glycoproteins, although it did not block the secretion of the proteins albumin and transferrin, as these did not accumulate intercellularly. Since transferrin labelled with [3H]leucine but not [3H]N-AcGlc is detected in the culture medium of hepatocytes exposed to CT, it was concluded that glycosylation of the protein is not required for secretion. This study shows that the effects of CT on protein synthesis and secretion in cultured hepatocytes are similar to those reported for tunicamycin (TM).  相似文献   

7.
Sertoli cell cultures were prepared from the testes of 20-day-old rats. The proteins which were secreted by the cells into the culture medium were labeled with [3H]leucine or l-[3H]fucose. The proteins were concentrated by ultrafiltration and analysed by polyacrylamide slab gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). Autofluorography of the gels at ?70 °C showed that the rat Sertoli cells synthesized and secreted at least 7 major polypeptides. The polypeptides had molecular weights ranging from 16 000 to 140 000 D. Proteins which were secreted from cultures of testicular fibroblasts and myoid cells had electrophoretic properties on SDS-PAGE which were different from Sertoli cell secreted proteins. Addition of FSH and testosterone to the Sertoli cell cultures increased the total synthesis and secretion of [3H]leucine-labeled proteins. No qualitative changes in the proteins as a result of hormone application could be detected. However, the synthesis of a polypeptide of molecular weight 48 000 was increased relative to the other secreted peptides if the cells were maintained in FSH and testosterone. The Sertoli cell secreted proteins were shown to be glycoproteins which can bind to ConA-Sepharose and can be labeled with [3H]fucose. Tunicamycin, a specific inhibitor of N-glycosylation, inhibited the secretion of [3H]proteins by 50% but had little effect on the intracellular protein synthesis.  相似文献   

8.
The existence of a high-affinity, low-capacity 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-binding species was demonstrated in cytosol from rat thymus. It was sensitive to heat and to pronase, trypsin or chymotrypsin but not to DNAase or RNAase, indicating that it was a protein. An excess of unlabelled 2,3,7,8-tetrachlorodibenzofuran or β-naphthoflavone displaced [3H]TCDD from the binder whereas phenobarbital, pregnenolone-16-α-carbonitrile or dexamethasone did not compete. Using a dextra-coated charcoal assay, the apparent dissociation constant (Kd) of the [3H]TCDD-binder complex was determined to 0.36 nM and the apparent maximum amount of binding sites (Bmax) to 68 fmol/mg of cytosolic protein. When analyzed by sucrose density-gradient centrifugation at high ionic strength, the [3H]TCDD-binder complex sedimented at 4?5 S; at low ionic strength the complex sedimented more rapidly, probably due to aggregation. All these data support the interpretation that the demonstrated cytosolic TCDD-binder represents the receptor protein for TCDD, as previously described for rat and mouse liver. Following intravenous administration of [3H]TCDD, a low-capacity [3H]TCDD-macromolecule complex was extractable from thymic cell neuclei; this complex behaved identically to the cytosolic [3H]TCDD-receptor complex when exposed to heat or to hydrolytic enzymes and was therefore alos identified as a protein. The nuclear [3H]TCDD-protein complex sedimented at 4–5 S at high ionic strength. Furthermore, a maximum uptake of [3H]TCDD in thymic nuclei was observed simultaneously with a decline in cytosolic radioactivity (at 3 h post-injection). These findings suggest that the nuclear [3H]TCDD-protein complex represented [3H]TCDD-receptor complex translocated from the cytoplasm. In conclusion, the rat thymus contains a cytosolic TCDD receptor at a concentration similar to that of the rat hepatic receptor. However, in vivo experiments showed that the nuclear uptake of [3H]TCDD (expressed as dpm/mg GNA) in the thymus was only about 6% of that in liver. Further studies are needed for an understanding of the mechanism behind this discrepancy.  相似文献   

9.
《Life sciences》1995,57(23):PL367-PL372
[3H]A-69024 has been prepared as a radioligand for studying the dopamine D1 receptor. [3H]A-69024 binds to rat striatal membranes with a KD = 14.3 ± 3.2 nM (mean ± SEM; n = 3) and Bmax = 63.5 ± 12.8 fmol/mg wet tissue (1.8 ± 0.3 pmol/mg protein). This ligand binds to only one site with a Hill coefficient close to unity. The in vivo biodistribution of [3H]A-69024 showed a high uptake in the striatum (5.9 %ID/g) at 5 min followed by clearance. As a measure of specificity, the striatum/cerebellar ratio reached a maximum of 6.7 at 30 min post-injection. Pre-treatment with the D1 antagonist R(+)SCH 23390 (1 mg/kg) reduced this ratio to unity. The dopamine antagonist (+)butaclamol and unlabeled A-69024 inhibited striatal uptake by 70 and 51%, respectively. Spiperone (D2/5-HT2A) and ketanserin (5-HT2A/5-HT2C) at doses of 1 mg/kg had no inhibitory effect on [3H]A-69024 uptake in the striatum; however, increased uptake of [3H]A-69024 by > 30% in the whole brain was observed. The selectivity and affinity of [3H]A-69024 suggests that this non-benzazepine radioligand may be useful for in vitro and in vivo studies of the dopamine D1 receptor.  相似文献   

10.
Subcellular fractions prepared from rat glial cells in culture (clonal line C6) were used in an attempt to characterize the adrenergic receptor involved in adenylate cyclase activation. Both [3H]norepinephrine binding and enzyme activation were measured under identical experimental conditions.Binding sites for norepinephrine could be detected; their main characteristics were: apparent Km : 4 · 10−6 M, maximal capacity: 20 pmol/mg protein.Their stereospecificity towards structually related drugs was found to be different from the stereospecificity of the receptor involved in adenylate cyclase activation. Thus, 3-methoxydopamine (a competitive inhibitor of norepinephrine for adenylate cyclase activation), phenylephrine (a partial adrenergic agonist) and the blocking agent propranolol were unable to compete with [3H]norepinephrine for binding. On the other hand, several molecules like dopa bearing a catechol group and which are unable to interact with the adenylate cyclase as agonists or competitive inhibitors strongly inhibited [3H]norepinephrine binding.As in several other systems so far studied, the presence on the glial cell's membrane of a large number of “catechol-binding sites” makes it difficult to characterize the β-adrenergic receptor.  相似文献   

11.
Summary [3H] thymidine incorporation into DNA of the parotid (PA) gland of adult and 20-day-old rats and into DNA of the pancreas (PANC) of 20-day-old rats was increased markedly following a 2-day regimen of isoproterenol (ISO) administration. However, when the submandibular-sublingual (SM-SL) glands had been removed just prior to initiation of the ISO injections, the [3H] thymidine incorporation into PA and PANC was inhibited, and cpm/mg protein of these organs was even lower than that of organs of untreated rats with SM-SL glands present. Removal of the PA glands just prior to initiation of the ISO regimen had no effect on the ISO-induced [3H] thymidine incorporation into DNA of PANC but partially inhibited that of the submandibular (SM) gland. It is suggested that the inhibitory effects on DNA and RNA synthesis that follow removal of SM-SL glands are attributable to the growth factors (epidermal growth factor and nerve growth factor) found in the rat SM gland. These factors appear to regulate normal DNA synthetic activity of exocrine glands as well as 1-adrenoceptor mediated DNA synthesis. Cellular hypertrophy induced by the ISO was less markedly affected by absence of the SM glands, but a partial inhibition of [3H] uridine incorporation into RNA of PA of adult rats also occurred when SM-SL glands were removed prior to initiation of the ISO-regimen.  相似文献   

12.
The hypothesis that arachidonic acid metabolism might be involved in Ca-mobilization mechanisms in exocrine gland cells was investigated. Arachidonate (10−4M) failed to stimulate protein secretion from slices of pancreas, parotid or lacrimal glands and failed to stimulate 86Rb efflux from parotid or lacrimal glands. The stimulation of protein secretion (all three glands) or 86Rb efflux (parotid and lacrimal glands) by appropriate secretagogues was unaffected by 10−5M indomethacin. Eicosatetraynoic acid (2×10−5M) inhibited 86Rb efflux due to carbachol but not that due to physalaemin or ionomycin. Nordihydroguaiaretic acid inhibited lacrimal and parotid gland responses only at high (10−4M) concentration. Collectively, these results argue against an obligatory role for arachidonate metabolites in Ca-mediated responses of these exocrine glands.In the exocrine glands activation by neurotransmitters (or analogs) of receptors that mobilize cellular Ca also stimulates the incorporation of 32PO4 into phosphatidylinositol (1–3). Michell (4,5) has suggested that in some manner this alteration in phospholipid metabolism may be functionally responsible for the opening of surface membrane Ca gates which presumably precedes the expression of a number of Ca-mediated responses by the exocrine cell. That this reaction probably preceeds Ca mobilization is deduced primarily from two experimental observations. First, receptor activation of phosphatidylinositol turnover is not prevented by Ca omission (6–8). Second, the effect is not mimicked by the divalent cationophore A-23187, while other effects of receptor activation are mimicked by this compound (7–9).There has also been some speculation as to the manner in which altered phosphatidylinositol metabolism might be involved in the Ca-gating mechanism (10–14). One such hypothesis suggests that receptor activation may lead to phosphatidylinositol breakdown which in turn leads to the release of free arachidonate (13, 14). As free arachidonate is generally believed to be the rate-limiting substrate for prostaglandin synthesis (15), the resulting prostaglandins might act to mobilize Ca or might act in concert with Ca (13, 14). There is evidence for this hypothesis for the mouse pancreas, where exogenous arachidonate and prostaglandins can stimulate amylase release (13). The effects of arachidonate, carbachol, caerulein and pancreozmin were all antagonized by sub-micromolar concentrations of indomethacin (13), a potent cyclooxygenase inhibitor (15). Additionally, recent reports have demonstrated stimulation by acetylcholine of prostaglandin E synthesis in mouse pancreas (16, 17).The purpose of this study was to examine the general applicability of this hypothesis by investigating the effects of arachidonate and substances that inhibit prostaglandin formation in two other exocrine tissues that show a prominent phosphatidylinositol turnover — the rat parotid and lacrimal glands.  相似文献   

13.
The binding characteristics of the β-adrenergic agonist (±)-[3H]hydroxybenzylisoproterenol to rat adipocyte membranes were studied. Binding was rapid, reaching equilibrium within 10 min at 37°C (second order rate constant k1=1.37·107·M?1·min?1). Dissociation of specific binding by 0.5 mM (?)-isoproterenol suggested dissociation from two different sites with respective dissociation rate constants k2 of 0.106·min?1 and 0.011·min?1.[3H]Hydroxybenzylisoproterenol binding was saturable (Bmax=690±107 fmol/mg protein), yielding curvilinear Scatchard plots. Computer modeling of these data were consistent with the existence of two classes of [3H]hydroxybenzylisoproterenol binding sites, one having high affinity (KD=3.5±0.7 nM) but low binding capacity (10% of the total sites) and one haveing low affinity (KD=101±20 nM) but high binding capacity (90% of the sites). Adrenergic ligands competed with [3H]hydroxybenzylisoproterenol binding with the following order of potency=(?)-propranolol>(?)-isoproterenol>(?)-norepinephrine≈ (?)-epinephrine>>(+)-isoproterenol=(+)-propranolo, which is consistent with binding to β1-adrenergic receptors. Competition curves of [3H]hydroxybenzylisoproterenol binding by the β-agonist (?)-isoproterenol were shallow and modeled to two affinity states of binding, whereas, competition curves by β-antagonist (?)-propranolol were steeper with Hill number near to one. Gpp[NH]p severely reduced [3H]hydroxybenzyl-isoproterenol binding, an effect which apparently resulted from the reduction of the number of both the high and low affinity sites. In membranes which had been previously exposed to (?)-isoproterenol, then number of [3H]hydroxybenzylisoproterenol binding sites was reduced by 50%, an effect which apparently resulted from the loss of part of both the high and low affinity state binding sites. Finally, the ability of (?)-isoproterenol to stimulate adenylate cyclase correlate closely with the ability of (?)-isoproterenol to displace [3H]hydroxybenzylisoproterenol binding. Comparison of these findings with the binding characteristics of the β-antagonist [3H]dihydroalprenolol to rat adipocyte membranes, led to conclude that [3H]hydroxybenzylisoproterenol can be successfully used to label the β-adrenergic receptors of rat fat cells and suggests that it might be a better ligand than [3H]dihydroalprenolol in these cells.  相似文献   

14.
[3H]Muscimol binding at 23°C and muscimol stimulated [3H]flunitrazepam binding at 37°C to membranes of rat cerebral cortex have been investigated. In washed membrane preparations, 2 apparent populations of [3H]muscimol binding sites can be observed. At 23°C [3H]muscimol binding is more sensitive to inhibition by NaCl and by other salts than at 0°C. The CNS depressants etazolate and pentobarbital reversibly enhance [3H]muscimol binding and they increase the affinity of muscimol as a stimulator of [3H]flunitrazepam binding. Conversely the CNS convulsants picrotoxin, picrotoxinin and isopropylbicyclophosphate (IPTBO) reversibly interfere with [3H]muscimol binding when NaCl is present and these drugs antagonize the effects of etazolate. In the presence of NaCl, picrotoxin, picrotoxinin and IPTBO also decrease the apparent affinity of muscimol or GABA as stimulator of [3H]flunitrazepam binding. Binding of [3H]muscimol to GABA recognition sites of rat cerebral cortex is enhanced by Ag+, Hg+ and Cu2+ in μM concentrations, Ag+ being most potent. The effects of 100 μM AgNO3 persist after repeated washing of the membranes. When membranes are pretreated with AgNO3 only one apparent population of [3H]muscimol binding sites with high affinity (Kd: 6–8 nM) is found. In AgNO3 pretreated membranes, the affinity of muscimol as stimulator of [3H]flunitrazepam binding is increased 18 times (EC50 14 nM) when compared to control membranes, (EC50 253 nM). In AgNO3 pretreated membranes, etazolate, pentobarbital and IPTBO fail to perturb either [3H]muscimol binding or baseline and muscimol stimulated [3H]flunitrazepam binding. The results demonstrate that the apparent sensitivity of GABA binding sites of the GABA-benzodiazepine-picrotoxin receptor complex can be increased by etazolate and pentobarbital and decreased by picrotoxin and IPTBO. These drugs have in common that they interfere with [3H]dihydropicrotoxinin binding.  相似文献   

15.
Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5 min decreased [3H]NE uptake capacity, an effect characterized by a robust decrease in the Vmax of the transport of [3H]NE. As expected, reserpine did not displace the binding of [3H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [3H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [3H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca2+/Ca2+–calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [3H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, α-methyl-p-tyrosine, increased [3H]NE uptake and eliminated the inhibitory effects of reserpine on [3H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca2+-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors.  相似文献   

16.
1. [3H]Batrachotoxinin A-20-α-benzoate (BTX-B), a radioligand that labels the alkaloid activator recognition site of the voltage-sensitive sodium channel, was bound specifically to high affinity, saturable sites in a subcellular preparation from house fly (Musca domestica L.) heads that was shown previously to contain binding sites for other sodium channel-directed ligands.2. Specific binding of [3H]BTX-B was observed in the presence of 140 mM sodium or potassium and was inhibited by choline ion.3. Saturating concentrations of scorpion (Leiurus quinquestriatus) venom stimulated the specific binding of [3H]BTX-B four-fold, increasing the proportion of specific binding of 10 nM [3H]BTX-B from less than 15% to 40%. Equilibrium dissociation studies in the presence of scorpion venom gave an equilibrium dissociation constant (KD) for [3H]BTX-B of 80 nM and a maximal binding capacity (Bmax) of 1.5 pmol/mg protein.4. Parallel experiments in the absence of venom gave a KD value of 140 nM and a Bmax of 1.3 pmol/mg protein, indicating that scorpion venom stimulated [3H]BTX-B binding by increasing the affinity of this site approximately two-fold.5. The specific binding of [3H]BTX-B was inhibited by the sodium channel activators aconitine and batrachotoxin and, to a lesser extent, by the anticonvulsant diphenylhydantoin. However, several other sodium channel-directed neurotoxins known to exert allosteric effects on the binding of [3H]BTX-B to mammalian brain preparations did not affect the binding of [3H]BTX-B to house fly head membranes.6. These studies provide evidence for a high affinity binding site in house fly head membrane preparations that exhibits properties expected of the activator recognition site of the voltage-sensitive sodium channel but does not respond to several compounds known to modify allosterically the binding of [3H]BTX-B to sodium channels in mammalian brain.  相似文献   

17.
The biosynthesis of glucagon in perfused rat pancreas   总被引:4,自引:3,他引:1  
The biosynthesis of glucagon was studied by using the recirculated, isolated perfused rat pancreas. [3H]Tryptophan was initially incorporated into acid–ethanol-extractable protein, which on gel filtration was eluted with a molecular weight of about 9000 and contained a small amount of glucagon immunoreactivity. With longer incubation [3H]tryptophan incorporation into a second peak was obtained in an identical position with that of the majority of rat glucagon immunoreactivity. This peak of labelled protein exhibited migration characteristics on polyacrylamide-gel electrophoresis identical with those of rat glucagon and was identified as newly synthesized glucagon by demonstration of specific binding and dissociation behaviour with glucagon antibodies. The incorporation of [3H]tryptophan into acid–ethanol-extractable protein was inhibited by cycloheximide. High concentrations of glucose increased [3H]tryptophan incorporation into high-molecular-weight protein but decreased incorporation into proteins smaller than cytochrome c. The pattern of [3H]leucine incorporation into protein was similar to that of [3H]tryptophan.  相似文献   

18.
Glycine transporter-1 (GlyT-1) in glial cells regulates extracellular levels of glycine, which acts as an obligatory co-agonist at the N-methyl-D-aspartate (NMDA) receptors in the brain. In the present study, we developed a novel radioligand, [3H]3-chloro-N-((S)-((R)-1-methylpiperidin-2-yl)(thiophen- 3-yl)methyl)-4- (trifluoromethyl)picolinamide ([3H]CHIBA-3007), for studying GlyT-1 in the brain. The presence of a single saturable high-affinity binding component for [3H]CHIBA-3007 binding to the rat brain membranes was detected. Scatchard analysis revealed an apparent equilibrium dissociation constant (Kd) of 1.61±0.16 nM and a maximal number of binding sites (Bmax) of 692.8±22.8 fmol/mg protein (mean ± SEM, n = 3). The specific binding of [3H]CHIBA-3007 was inhibited by a number of GlyT-1 inhibitors, such as CHIBA-3007, desmethyl-CHIBA-3007, CHIBA-3008, SSR504734, NFPS/ALX5407, LY2365109 and Org24598, consistent with the pharmacological profiles of GlyT-1 inhibitors. Interestingly, the potency of eight GlyT-1 inhibitors (CHIBA-3007, desmethyl-CHIBA-3007, NFPS/ALX5407, LY2365109, Org24598, SSR504734, sarcosine, and glycine) for blocking in vitro specific binding of [3H]CHIBA-3007 was significantly correlated with the potency of these inhibitors for inhibiting [14C]glycine uptake in the rat brain membranes. In contrast, the GlyT-2 inhibitor ALX1393 exhibited very weak for [3H]CHIBA-3007 binding. Furthermore, the regional distribution of [3H]CHIBA-3007 binding in the rat brain was similar to the previously reported distribution of GlyT-1. The present findings suggest that [3H]CHIBA-3007 would be a useful new radioligand for studying GlyT-1 in the brain.  相似文献   

19.
The effects of calmodulin antagonists on the secretion of lysosomal enzyme and lipid metabolism in guinea-pig peritoneal macrophages were studied. Calmodulin antagonists, such as trifluoperazine, dibucaine and quinacrine, inhibited the secretion of N-acetyl-β-d-glucosaminidase from cytochalasin B-treated macrophages when the macrophages were stimulated by the chemotactic peptide, formylmethionyl-leucyl-phenylalanine (f Met-Leu-Phe) or the Ca2+ ionophore A23187. The effect of calmodulin antagonists on the incorporation of [32P]Pi or [3H]glycerol into glycerolipids as well as on the redistribution of [14C]glycerol or [3H]arachidonic acid in [14C]glycerol- or [3H]arachidonic acid-prelabelled lipids were examined. Trifluoperazine, dibucaine or quinacrine stimulated [32P]Pi incorporation into phosphatidic acid (PtdA) and phosphatidylinositol (PtdIns) without significant effect on the labelling of phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), lysophosphatidylcholine (lyso-PtdCho) and lysophosphatidylethanolamine (lyso-PtdEtn). The incorporation of [32P]Pi into phosphatidylcholine (PtdCho) was, on the contrary, inhibited. When calmodulin antagonists were added to macrophages stimulated by fMet-Leu-Phe, [32P]Pi incorporation into PtdIns and PtdA was synergistically increased compared with that induced only by calmodulin antagonists. Trifluoperazine inhibited the incorporation of [3H]glycerol into PtdCho, triacylglycerol and PtdEtn. Also in this case, the incorporation of [3H]glycerol into PtdA and PtdIns was greatly enhanced. But [3H]glycerol incorporation into PtdSer, lyso-PtdEtn and lyso-PtdCho was not affected by the drug. On the other hand, diacylglycerol labelling with [3H]glycerol was maximally activated by 10μm-trifluoperazine and levelled off with the increasing concentration. When the effect of calmodulin antagonists on the redistribution of [14C]glycerol among lipids was examined in pulse-chase experiments, no significant effect on [14C]glycerol redistribution in PtdEtn, PtdCho, PtdIns, PtdSer, PtdA and tri- and di-acylglycerol could be detected. When macrophages prelabelled with [3H]arachidonic acid were treated with trifluoperazine, dibucaine or quinacrine, the [3H]arachidonic acid moiety in PtdEtn and PtdCho was decreased and that in PtdA was increased. The formation of [arachidonate-3H]diacylglycerol and non-esterified [3H]-arachidonic acid was also enhanced, but the increase in [3H]arachidonic acid was only observed at concentrations between 1 and 50μm. [Arachidonate-3H]PtdIns was not significantly affected. The activated formation of [arachidonate-3H]PtdA, diacylglycerol and non-esterified arachidonic acid by these drugs was synergistically enhanced in the presence of fMet-Leu-Phe.  相似文献   

20.
The acetylcholine receptor of Torpedo electroplax is purified by affinity adsorption using cobra toxin (Naja naja siamensis) covalently attached to Sepharose 4B. Desorption by 10 mm benzoquinonium produces a protein that binds α-[125I]bungarotoxin but not [3H]acetylcholine or other reversible cholinergic ligands. On the other hand, desorption by 1 m carbamylcholine produces an acetylcholine receptor protein that binds [3H]acetylcholine, [3H]decamethonium, [3H]nicotine, [14C]dimethyl-d-tubocurarine, and α-[125I]bungarotoxin. The batch method of affinity adsorption employed gives recoveries of acetylcholine receptor (as measured by acetylcholine binding) averaging 69.2 ± 14.6%. The purity of the isolated acetylcholine receptor protein is estimated to be at best 87% as judged by disc gel electrophoresis and electrofocusing.The purified acetylcholine receptor binds 7.8 nmoles acetylcholine/mg protein based on estimation of protein concentration by a spectrophotometric method. Of these, 2.7 nmoles exhibit high affinity (KD = 0.02 μM) and 5.1 nmoles a lower affinity (KD = 1.97 μM. If the protein concentration used is that obtained by amino acid analysis, the total specific activity would be 10.4 nmoles acetylcholine bound per milligram protein. The subunit carrying one acetylcholine binding site is estimated to range between 83,000 and 112,000 daltons. In contrast to the membrane-bound or Lubrol-solubilized acetylcholine receptor, the purified acetylcholine receptor shows no autoinhibition with acetylcholine concentrations up to 10 μm. Binding of acetylcholine was totally inhibited by α-bungarotoxin or cobra toxin and was partially blocked by four nicotinic drugs, but not by two muscarinic ones. The amino acids of the acetylcholine receptor are analyzed and compared to those of acetylcholinesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号