首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
J R Schullek  I B Wilson 《Peptides》1989,10(2):431-434
Phosphate, borate, and Tris inhibit angiotensin converting enzyme (ACE), but HEPES buffer is inert. Measurements of substrate inhibition were made in HEPES buffer at pH 7.0 and 25 degrees C and 37 degrees C. Substrate inhibition was marked and goes to completion. A new equation for substrate inhibitions enables one, under favorable circumstances, to determine whether there is cooperativity in the binding of substrate to the inhibitory and active sites. Cooperativity does occur with ACE using Hipp-His-Leu as substrate. The kinetic parameters were measured (Km = 0.21 mM, K* = 0.65 mM at 37 degrees C). The enzyme concentration (1.94 X 10(-8) M) was determined by titration with lisinopril so that kcat (5 X 10(3) at 37 degrees C) could be determined. Using this value and the molecular weight the specific activity of ACE was calculated for different common buffers. The specific activity in HEPES calculated from Vmax was 33.7 units/mg at 37 degrees C.  相似文献   

2.
Treatment of intact human erythrocytes with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) leads to inhibition of anion transport as measured by [32P]phosphate exchange for intracellular chloride. Inhibition is rapid at 37 degrees C (80% inhibition, 1.7 mM NBD-Cl, 3 min, pH 6.9) and not reversed by washing the cells with 1% bovine serum albumin in isotonic sucrose citrate buffer. Pretreatment of cells with N-ethylmaleimide and p-chloromercuribenzenesulfonic acid enhanced transport inhibition by NBD-Cl. Transport inhibition caused by brief incubations of erythrocytes with NBD-Cl could be almost completely reversed with dithiothreitol or beta-mercaptoethanol. Prolonged incubation (60 min, 37 degrees C, pH 6.4, sucrose-citrate buffer) following NBD-Cl treatment leads to partial reversal of transport inhibition. The residual inhibition is then only partially reversed by dithiothreitol treatment. Reversal of transport inhibition of dithiothreitol or beta-mercaptoethanol may be prevented by incubation of the erythrocytes with sodium dithionite. Phosphate transport was readily inhibited by other tyrosine-directed reagents, tetranitromethane (55% inhibition, 1.6 mM, 3 min, 37 degrees C, pH 8.3 in sucrose-citrate medium) and p-nitrobenzene sulfonyl fluoride (31% inhibition, 1.8 mM, 3 min, 37 degrees C, pH 8.1 in sucrose-citrate medium) but not by N-acetylimidazole (10% inhibition, 37.5 mM, 30 min, 37 degrees C, pH 7.5). These results suggest that NBD-Cl inhibits anion exchange by two mechanisms; a rapid inhibition reversible by sulfhydryl reagents, possibly due to modification of a tyrosine residue(s), and a slower irreversible inhibition due to modification of an essential amino group in the transporter.  相似文献   

3.
Kinetic and thermodynamic studies have been made on the effect of acetaminophen on the activity and structure of adenosine deaminase in 50 mM sodium phosphate buffer pH 7.5, at two temperatures of 27 and 37 degrees C using UV spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. Acetaminophen acts as a competitive inhibitor at 27 degrees C (Ki = 126 microM) and an uncompetitive inhibitor at 37 degrees C (Ki = 214 microM). Circular dichroism studies do not show any considerable effect on the secondary structure of adenosine deaminase by increasing the temperature from 27 to 37 degrees C. However, the secondary structure of the protein becomes more compact at 37 degrees C in the presence of acetaminophen. Fluorescence spectroscopy studies show considerable change in the tertiary structure of the protein by increasing the temperature from 27 to 37 degrees C. Also, the fluorescence spectrum of the protein incubated with different concentrations of acetaminophen show different inhibition behaviors by the effector at the two temperatures.  相似文献   

4.
Anthrax is caused by Gram positive bacterium Bacillus anthracis. Pathogenesis is result of production of three protein components, protective antigen (PA), lethal factor (LF), and edema factor (EF). PA in combination with LF (lethal toxin) is lethal to animals, while PA in combination with EF (edema toxin), causes edema. PA, LF, and EF are very thermolabile. Differential scanning calorimetry (DSC) was used to unravel the energetics of LF denaturation as a function of pH ranging from 7.8 to 5.5. Transition temperature (T(m)) of LF was found to be approximately equal to 42 degrees C and onset of denaturation occurs at approximately equal to 30 degrees C. The ratio of calorimetric to van't Hoff's enthalpy was nearly equal to unity at pH 7.0, indicative of presence of single structural domain in LF at pH 7.0, unlike PA which has been structurally observed to consist of 4 domains. It was found by cytotoxicity studies using J774A.1 macrophage like cells that LF was most stable at pH approximately 6.5. This paper reports for the first time the denaturation of LF at different pH values at 37 degrees C and tries to establish a correlation between denaturation and loss of LF activity at different pH values.  相似文献   

5.
The effects of chlorpromazine on various properties of the F1-ATPases from bovine heart mitochondria (MF1), the plasma membranes of Escherichia coli (EF1), and plasma membranes of the thermophilic bacterium PS3 (TF1) have been examined. While chlorpromazine inhibited MF1 with an I0.5 of about 50 microM and EF1 with an I0.5 of about 150 microM at 23 degrees C, the ATPase activity of TF1 was stimulated by chlorpromazine concentrations up to 0.6 mM at this temperature. Maximal activation of about 20% was observed at 0.2 mM chlorpromazine at 23 degrees C. Chlorpromazine concentrations greater than 0.6 mM inhibited TF1 at 23 degrees C. At 37 degrees C the ATPase activity of TF1 was doubled in the presence of 0.5 mM chlorpromazine, the concentration at which maximal stimulation was observed at this temperature. Chlorpromazine inhibited the rate of inactivation of EF1 by dicyclohexylcarbodiimide (DCCD) at 23 degrees C and pH 6.5. Concentrations of chlorpromazine which inhibited the ATPase activity of TF1 at pH 7.0 accelerated the rate of inactivation of the enzyme by DCCD at pH 6.5, while lower concentrations of the phenothiazine, which stimulated the ATPase, had no effect on DCCD inactivation. Chlorpromazine concentrations up to 1.0 mM had no effect on the rate of inactivation of TF1 by DCCD at 37 degrees C and pH 6.5. Chlorpromazine at 0.5 mM accelerated the rate of inactivation of MF1 by 5'-p-fluorosulfonylbenzoyladenosine (FSBA), while it slowed the rate of inactivation of EF1 by FSBA. The inactivation of TF1 by FSBA in the absence of chlorpromazine was complex and was not included in this comparison. Chlorpromazine protected MF1 and EF1 against cold inactivation. Whereas 100 microM chlorpromazine afforded about 90% stabilization of MF1 at 4 degrees C, only about 30% stabilization of EF1 was observed under the same conditions in the presence of 400 microM chlorpromazine. Each of the ATPases was inactivated by the structural analog of chlorpromazine, quinacrine mustard. Whereas 5 mM ATP and 5 mM ADP protected MF1 and TF1 against inactivation by 0.5 mM quinacrine mustard, the rate of inactivation of EF1 by quinacrine mustard was accelerated fourfold by 5 mM ATP and slightly accelerated by 5 mM ADP.  相似文献   

6.
The kinetic and thermodynamic effects of aspirin and diclofenac on the activity of adenosine deaminase (ADA) were studied in 50 mM phosphate buffer pH = 7.5 at 27 and 37 degrees C, using UV-Vis spectrophotometry and isothermal titration calorimetry (ITC). Aspirin exhibits competitive inhibition at 27 and 37 degrees C and the inhibition constants are 42.8 and 96.8 microM respectively, using spectrophotometry. Diclofenac shows competitive behavior at 27 degrees C and uncompetitive at 37 degrees C with inhibition constants of 56.4 and 30.0 microM, at respectively. The binding constant and enthalpy of binding, at 27 degrees C are 45 microM, - 64.5 kJ/mol and 61 microM, - 34.5 kJ/mol for aspirin and diclofenac. Thermodynamic data revealed that the binding process for these ADA inhibitors is enthalpy driven. QSAR studies by principal component analysis implemented in SPSS show that the large, polar, planar, and aromatic nucleoside and small, aromatic and polar non-nucleoside molecules have lower inhibition constants.  相似文献   

7.
We have studied the fusion activity of Sendai virus, a lipid-enveloped paramyxovirus, towards a line of adherent cells designated PC-12. Fusion was monitored by the dequenching of octadecyl-rhodamine, a fluorescent non-exchangeable probe. The results were analysed with a mass action kinetic model which could explain and predict the kinetics of virus-cell fusion. When the temperature was lowered from 37 degrees C to 25 degrees C, a sharp inhibition of the fusion process was observed, probably reflecting a constraint in the movement of viral glycoproteins at low temperatures. The rate constants of adhesion and fusion were reduced 3.5-fold and 7-fold, respectively, as the temperature was lowered from 37 degrees C to 25 degrees C. The fusion process seemed essentially pH-independent, unlike the case of liposomes and erythrocyte ghosts. Preincubation of the virus in the absence of target cell membranes at neutral and alkaline pH (37 degrees C, 30 min) did not affect the fusion process. However, a similar preincubation of the virus at pH = 5.0 resulted in marked, though slow, inhibition in fusion with the fusion rate constant being reduced 8-fold. Viral preincubation for 5 min in the same acidic conditions yielded a mild inhibition of fusogenic activity, while preincubation in the cold (4 degrees C, 30 min) did not alter viral fusion activity. These acid-induced inhibitory effects could not be fully reversed by further viral preincubation at pH = 7.4 (37 degrees C, 30 min). Changes in internal pH as well as endocytic activity of PC-12 cells had small effect on the fusion process, thus indicating that Sendai virus fuses primarily with the plasma membranes.  相似文献   

8.
Human liver 1-aspartamido-beta-N-acetylglucosamine amidohydrolase (aspartylglucosylaminase, EC 3.5.1.26) was purified 17 500-fold to apparent homogeneity as judged from polyacrylamide-gel disc electrophoresis. A pH optimum of 7.7-9.0 was found. The Km value was pH- and temperature-dependent. At 37 degrees C and pH 7.7, Km was 0.16 mM and it increased to 0.29 at pH 6.0 and 0.23 at pH 9.0. At 25 degrees C and pH 7.7, a Km value of 0.99 mM was obtained. When the substrate concentration was varied, apparent Michaelis-Menten kinetics were obtained. p-Hydroxymercuribenzoate, glutathione or cysteine had no effect on the enzyme activity; 5 mM-N-acetylcysteine inhibited about 47% of the total enzyme activity. Apart from Cu2+, other bivalent ions were virtually ineffective at 1 mM. The kinetic study differentiates this enzyme from aspartylglucosylaminase from other sources.  相似文献   

9.
Human seminal plasma contain two forms of beta-glucuronidase (beta-D-glucuronidase glucuronosohydrolase, EC 3.2.1.31) which are present in the ratio of 4:1. The major form of beta-glucuronidase with a slow moving band in electrophoresis was purified to homogeneity as revealed by polyacrylamide gel electrophoresis, double immunodiffusion and immunoelectrophoresis. The major form of beta-glucuronidase shows dual optimum pH at 4.3 and 4.7 with a dip in the activity at pH 4.5. The Km of this form of beta-glucuronidase is dependent on pH and was found to be 0.95, 3.08 and 0.67 mM at pH 4.4, 4.5 and 4.7, respectively. The major form of beta-glucuronidase from seminal plasma is stable at 55 degrees C for 30 min but it denatures at 65 degrees C. Heat denaturation is faster at acidic pH (4.7) than at alkaline pH (7.8). However, the activity of enzyme increased linearly with increase in temperature up to 70 degrees C during incubation with substrate. Cu, Ag, Hg and Ni salts inhibited enzyme activity significantly at 0.1 and 1.0 mM concentration, but the inhibition of HgCl2 was protected by cysteine. 1,4-D-Saccharic acid lactone and ascorbic acid inhibited seminal beta-glucuronidase competitively, yielding Ki values of 1.7 . 10(-3) mM and 10.3 mM, respectively. Though fructose and mannose also showed significant inhibition of beta-glucuronidase at 10-100 mM, glucose did not show any effect. The molecular weight of the major form of beta-glucuronidase was found to be 279 000, and it appears to be composed of four subunits each having a molecular weight of 74 000.  相似文献   

10.
Lung carbonic anhydrase (CA) participates directly in plasma CO2-HCO3(-)-H+ reactions. To characterize pulmonary CA activity in situ, CO2 excretion and capillary pH equilibration were examined in isolated saline-perfused rat lungs. Isolated lungs were perfused at 25, 30, and 37 degrees C with solutions containing various concentrations of HCO3- and a CA inhibitor, acetazolamide (ACTZ). Total CO2 excretion was partitioned into those fractions attributable to dissolved CO2, uncatalyzed HCO3- dehydration, and catalyzed HCO3- dehydration. Approximately 60% of the total CO2 excretion at each temperature was attributable to CA-catalyzed HCO3- dehydration. Inhibition of pulmonary CA diminished CO2 excretion and produced significant postcapillary perfusate pH disequilibria, the magnitude and time course of which were dependent on temperature and the extent of CA inhibition. The half time for pH equilibration increased from approximately 5 s at 37 degrees C to 14 s at 25 degrees C. For the HCO3- dehydration reaction, pulmonary CA in situ displayed an apparent inhibition constant for ACTZ of 0.9-2.2 microM, a Michaelis-Menten constant of 90 mM, a maximal reaction velocity of 9 mM/s, and an apparent activation energy of 3.0 kcal/mol.  相似文献   

11.
AIM: To evaluate the effect of NaCl, growth medium and temperature on the antimicrobial activity of bovine lactoferrin (LF) against Escherichia coli O157:H7 in the presence of different chelating agents. METHODS AND RESULTS: LF (32 mg ml(-1)) was tested against E. coli O157:H7 strain 3081 in Luria broth (LB) and All Purpose Tween (APT) broth with metal ion chelators sodium bicarbonate (SB), sodium lactate (SL), sodium hexametaphosphate (SHMP), ethylene diamine tetraacetic acid (EDTA) or quercetin at 0.5 and 2.5% NaCl at 10 and 37 degrees C. LF and the chelators were tested against four other E. coli O157:H7 strains in LB at 2.5% NaCl and 10 degrees C. LF alone was bacteriostatic against strains 3081 and LCDC 7283 but other strains grew. Antimicrobial effectiveness of LF was reduced in APT broth but enhanced by SB at 2.5% NaCl and 10 degrees C where 4.0 log(10) CFU ml(-1) inoculated cells were killed. EDTA enhanced antimicrobial action of the LF-SB combination. SL alone was effective against E. coli O157:H7 but a reduction in its activity at 2.5% NaCl and 10 degrees C was reversed by LF. The combinations LF-SHMP and LF-quercetin were more effective at 37 degrees C and NaCl effects varied. CONCLUSIONS: LF plus SB or SL were bactericidal toward the same 3/5 E. coli O157:H7 strains and inhibited growth of the others at 2.5% NaCl and 10 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of LF with either SL or SB shows potential for reducing viability of E. coli O157:H7 in food systems containing NaCl at reduced, but growth permissive temperature.  相似文献   

12.
Boar sperm plasma membranes were purified by differential and sucrose density equilibrium centrifugation and were found to yield a single band at a density of 1.14 g/cm3. Both alkaline and acid phosphatase activities were enriched in this fraction. The alkaline phosphatase activity was optimal in 100 mM tris (hydroxymethyl) methylamine (Tris)-NaHCO3 at pH 9.9 with 0.05% Triton X-100 and 1 mM MgCl2. This activity was inhibited by ethylenediaminetetraacetic acid (EDTA), cadmium, zinc or heating at 60 degrees C for 30 min. Also, L-homoarginine caused approximately 70% inhibition and L-phenylalanine or L-leucine caused about 10 to 20% inhibition. Acid phosphatase activity was optimal in 100 mM sodium acetate at pH 5.1 with 0.05% Triton. Sodium dodecyl sulfate, potassium fluoride (KF) or sulfhydryl reagents inhibited the activity, while EDTA or heating at 60 degrees C had no effect. These data for enzymes from boar sperm plasma membranes can be used for future work on the quantitation of the enzymes, distinguishing these two phosphatases from other phosphohydrolases, purification of the enzymes and for comparison to phosphatases in other tissues.  相似文献   

13.
21S Dynein ATPase [EC 3.6.1.3] from axonemes of a Japanese sea urchin, Pseudocentrotus depressus, and its subunit fractions were studied to determine their kinetic properties in the steady state, using [gamma-32P]ATP at various concentrations, 5 mM divalent cations, and 20 mM imidazole at pH 7.0 and 0 degrees C. The following results were obtained. 1. 21S Dynein had a latent ATPase activity of about 0.63 mumol Pi/(mg . min) in 1 mM ATP, 100 mM KCl, 4 mM MgSO4, 0.5 mM EDTA, and 30 mM Tris-HCl at pH 8.0 and 25 degrees C. Its exposure to 0.1% Triton X-100 for 5 min at 25 degrees C induced an increase in the ATPase activity to about 3.75 mumol Pi/(mg . min) and treatment at 40 degrees C for 5 min also induced a similar activation. 2. The double-reciprocal plot for the ATPase activity of dynein activated by the treatment at 40 degrees C consisted of two straight lines, while that of nonactivated 21S dynein fitted a single straight line. 3. In low ionic strength solution, the Mg- and Mn-ATPase of 21S dynein showed substrate inhibition at ATP concentrations above 0.1 mM; the inhibition decreased with increasing ionic strength. Ca- and Sr-ATPase showed no substrate inhibition. 4. Both the Vmax and Km values of dynein ATPase decreased reversibly upon addition of about 40% (v/v) glycerol. In the presence of glycerol, the dynein ATPase showed an initial burst of Pi liberation. The apparent Pi-burst size was 1.0 mol/(10(6) g protein) and the true size was calculated to be 1.6 mol/1,250 K after correcting for the effect of Pi liberation in the steady state and the purity of our preparation. 5. One of the subunit fractions of 21S dynein which was obtained by the method of Tang et al. showed substrate inhibition and an initial burst of Pi liberation of 1.4 mol/(10(6) g protein) in the presence of 54% (v/v) glycerol.  相似文献   

14.
Human adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) has been studied in preparations of fat cell membranes ("ghosts"). As reported earlier, under ordinary assay conditions (1.0 mM ATP, 5 mM Mg2+, 30 degrees C, 10 min incubation) the enzyme was activated 6-fold by epinephrine in the presence of the GTP analog, 5'-guanylyl-imidodiphosphate [GMP-P(NH)P] (Cooper, B. et al. (1975) J. Clin. Invest. 56, 1350-1353). Basal activity was highest during the first 2 min of incubation then slowed and was linear for at least the next 18 min. Epinephrine, added alone, was often without effect. but sometimes maintained the initial high rate of basal activity. GMP-P(NH)P alone produced inhibition ("lag") of basal enzyme early in the incubation periods. Augmentation of epinephrine effect by GMP-P(NH)P, which also proceeded after a brief (2 min) lag period, was noted over a wide range of substrate (ATP) concentrations. GTP inhibited basal levels of the enzyme by about 50%. GTP also allowed expression of an epinephrine effect, but only in the sense that the hormone abolished the inhibition by GTP. Occasionally a slight stimulatory effect on epinephrine action was seen with GTP. At high Mg2+ concentration (greater than 10 mM) or elevated temperatures (greater than 30 degrees C) GMP-P(NH)P alone activated the enzyme. Maximal activity of human fat cell adenylate cyclase was seen at 50 mM Mg2+, 1.0 mM ATP, pH 8.2, and 37 degrees C in the presence of 10(-4) M GMP-P(NH)P; under these conditions addition of epinephrine did not further enhance activity. Human fat cell adenylate cyclase of adults was insensitive to ACTH and glucagon even in the presence of GMP-P(NH)P.  相似文献   

15.
Inhibition of CA V decreases glucose synthesis from pyruvate   总被引:1,自引:0,他引:1  
The carbonic anhydrase inhibitor acetazolamide reduces citrulline synthesis by intact guinea pig liver mitochondria and also inhibits mitochondrial carbonic anhydrase (CA V) and the more lipophilic carbonic anhydrase inhibitor ethoxzolamide reduces urea synthesis by intact guinea pig hepatocytes in parallel with its inhibition of total hepatocytic carbonic anhydrase activity. Intact hepatocytes from 48-h starved male guinea pig livers were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 5 mM pyruvate, 5 mM lactate, 3 mM ornithine, 10 mM NH4Cl, 1 mM oleate; with these inclusions both urea and glucose synthesis start with HCO3- -requiring enzymes, carbamyl phosphate synthetase I and pyruvate carboxylase, respectively. Urea and glucose synthesis were inhibited in parallel by increasing concentrations of ethoxzolamide, estimated Ki for each approximately 0.1 mM. In other experiments hepatocytes were incubated at 37 degrees C in Krebs-Henseleit with 95% O2/5% CO2 at pH 7.1 with 10 mM glutamine, 1 mM oleate; with these inclusions glucose synthesis no longer starts with a HCO3- -requiring enzyme. Urea synthesis was inhibited by ethoxzolamide with an estimated Ki of 0.1 mM, but glucose synthesis was unaffected. Intact mitochondria were prepared from 48-h starved male guinea pig livers. Pyruvate carboxylase activity of intact mitochondria was determined in isotonic KCl-Hepes buffer, pH 7.4, 25 degrees C, with 7.5 mM pyruvate, 3 mM ATP, and 10 mM NaHCO3. Inclusion of ethoxzolamide resulted in reduction in the rate of pyruvate carboxylation in intact mitochondria, but not in disrupted mitochondria. It is concluded that carbonic anhydrase is functionally important for gluconeogenesis in the male guinea pig liver when there is a requirement for bicarbonate as substrate.  相似文献   

16.
Incubation of 50 mM D-glucose with aspartate aminotransferase (AST, EC 2.6.1.1) preparations (purified pig heart enzyme or a rat liver 20,000 x g supernatant) at 25 degrees C had no effect on enzyme activity. 50 mM D-fructose or D-ribose gradually inhibited pig heart AST under the same conditions to zero activity after 14 days. 50 mM DL-glyceraldehyde decreased enzyme activity to zero after 6 days of incubation. The inhibition of pig heart AST by 50 mM D-fructose or D-ribose was marked even at a temperature of 4 degrees C but it was less pronounced than at 25 degrees C. There was no effect of 0.5 mM 2-oxoglutarate on AST activity during incubation, while the presence of 25 mM L-aspartate decreased it rapidly. 0.5 mM 2-oxoglutarate partly prevented inhibition of AST by D-ribose or D-fructose, while an analogous experiment with 25 mM aspartate resulted in a rapid decline similar to that in the absence of sugars.  相似文献   

17.
This report documents attempts to mimic the rate enhancement effect of thrombomodulin on human alpha-thrombin-catalyzed activation of human protein C in the absence of exogenous calcium. Specifically the following tryptamine analogs at 1 mM concentration were shown to enhance the protein C activation rate relative to a control with no added effector at pH 8.3 (50 mM Tris-HCl, 0.1 M NaCl, 37 degrees C): serotonin, 1.2; tryptamine, 2.9; 5-fluorotryptamine, 4.4; 6-fluorotryptamine, 7.2. At much higher levels, e.g. 10 mM, all of the above effectors, as well as indole, showed a moderate inhibition of human protein C activation. ATP, a platelet release product, showed a sigmoidal inhibition pattern similar to that found previously for thrombin amidase, clotting, and esterase activity (Conery, B.G., and Berliner, L.J. (1983) Biochemistry 22, 369-375). Overall, the enhancement factors for human alpha-thrombin activation of protein C with the tryptamine analogs described above were remarkable when considering the effect of a simple ligand versus the natural activator, thrombomodulin.  相似文献   

18.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

19.
Reannealed hybrid molecules of wild-type bacteriophage lambda DNA were prepared in aqueous solutions of formamide at a variety of NaCl concentrations at both room temperature ( 22 degrees C) and 37 degrees C. Treatment of the hybrid DNA molecules with the single-strand-specific nuclease S1 from Aspergillus oryzae followed by alkaline sucrose gradient sedimentation was used to monitor the extent and fidelity of hybridization. The optimal renaturation conditions at room temperature were found to be: 50% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Optimal conditions at 37 degrees C were: 32% formamide, 35-55 mM NaCl and 10 mM Tris-HCl (pH 8.5) at 20-25 mug DNA/ml. Under these conditions approximately 85-90% of the input single-stranded DNA (molecular weight 1.5 X 10(7)) was rendered S1-nuclease-resistant within 8 h at room temperature and 5 h at 37 degrees C. Neither Mg2+ nor spermidine appeared to have an effect on either the extent or fidelity of duplex formation. Experiments performed with excess enzyme and with lambda/lambda imm 434 heteroduplex hybrids suggested that the hybrid that the hybrid DNA molecules formed under optimal conditions contained no, or only short (less than 1%), mismatched regions.  相似文献   

20.
Testicular galactolipid sulfotransferase activity is an early marker of differentiation during mammalian spermatogenesis. The enzyme will catalyze the sulfation of galactosylglycerol in the 3' position of the galactose moiety at 37 degrees C in vitro. However, sulfotransferase activity was found to be completely lost on preincubation of the solubilized enzyme preparation at 37 degrees C. This loss of activity was completely prevented by inclusion of ATP and Triton in the preincubation step. This protective effect was synergistic, pH dependent and correlated with an inhibition of endogenous phosphatase activity. These results are interpreted to suggest that the galactolipid sulfotransferase may be regulated by a phosphorylation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号