首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we explore the role of the C-terminus (V5 domain) of PKCepsilon plays in the catalytic competence of the kinase using serial truncations followed by immune-complex kinase assays. Surprisingly, removal of the last seven amino acid residues at the C-terminus of PKCepsilon resulted in a PKCepsilon-Delta731 mutant with greatly reduced intrinsic catalytic activity while truncation of eight amino acid residues at the C-terminus resulted in a catalytically inactive PKCepsilon mutant. Computer modeling and molecular dynamics simulations showed that the last seven and/or eight amino acid residues of PKCepsilon were involved in interactions with residues in the catalytic core. Further truncation analyses revealed that the hydrophobic phosphorylation motif was dispensable for the physical interaction between PKCepsilon and 3-phosphoinositide-dependent kinase-1 (PDK-1) as the PKCepsilon mutant lacking both the turn and the hydrophobic motifs could still be co-immunoprecipitated with PDK-1. These results provide fresh insights into the biochemical and structural basis underlying the isozyme-specific regulation of PKC and suggest that the very C-termini of PKCs constitute a promising new target for the development of novel isozyme-specific inhibitors of PKC.  相似文献   

2.
The ACCO gene from Lycopersicon esculentum (tomato) has been cloned into the expression vector PT7-7. The highly expressed protein was recovered in the form of inclusion bodies. ACCO is inactivated by diethyl pyrocarbonate (DEPC) with a second-order rate constant of 170 M–1 min–1. The pH–inactivation rate data imply the involvement of an amino acid residue with a pK value of 6.05. The difference UV spectrum of the the DEPC-inactivated versus native ACCO showed a single peak at 242 nm indicating the modification of histidine residues. The inactivation was reversed by the addition of hydroxylamine to the DEPC-inactivated ACCO. Substrate/cofactor protection studies indicate that both iron and ACC bind near the active site, which contains histidine residues. Four histidines of ACCO were individually mutated to alanine and glycine. H39A is catalytically active, while H177A, H177G, H211A, H211G, H234A, and H234G are basically inactive. The results indicate that histidine residues 177, 211, and 234 may serve as ligands for the active-site iron of ACCO and/or may play some important structural or catalytic role.  相似文献   

3.
Amino acid sequence of rabbit cardiac troponin T   总被引:2,自引:0,他引:2  
The complete amino acid sequence of the major isoform of rabbit cardiac troponin T was determined by the application of manual and automated Edman degradation procedures to fragments generated by suitable chemical or proteolytic cleavages. The protein has a polypeptide chain length of 276 amino acid residues, a Mr of 32,881, is negatively charged at neutral pH, and must be encoded by a different structural gene than rabbit skeletal troponin T. A more basic isoform differs in the NH2-terminal region by the replacement of 7 glutamic acid residues by neutral amino acids. Comparison of the sequence with that of rabbit skeletal troponin T shows close homology in those structural regions (residues 47-151 and 170-236 of rabbit skeletal troponin T) previously implicated in interactions with tropomyosin, troponin I and troponin C and predicts similar secondary structural features. In addition, the NH2- (16 residues) and COOH-terminal (10 residues) segments are homologous. In the cardiac protein, the regions of residues 17-46, 152-169, and 237-249 (rabbit skeletal troponin T numbering scheme) show little similarity with the skeletal protein and include multiple amino acid differences as well as insertions and/or deletions. Within these nonhomologous segments, however, there are regions of high similarity or identity with the amino acid sequence of chicken cardiac troponin T deduced from DNA sequencing (Cooper, T.A., and Ordahl, C.P. (1985) J. Biol. Chem. 260, 11140-11148). These include residues 36-46, 152-161, and 237-242 and may represent regions of functional importance for cardiac troponin T as compared with the skeletal protein.  相似文献   

4.
Malonyl-CoA synthetase (MCS) has been previously purified and characterized from Bradyrhizobium japonicum USDA 110. The gene encoding this enzyme is now cloned, sequenced, and expressed in Escherichia coli. The enzyme contains 509 amino acid residues, with a calculated molecular mass of 55,239 Da. The recombinant enzyme was also purified from the transformed E. coli. The enzyme was essentially indistinguishable from the MCS of B. japonicum by the criteria of polyacrylamide gel electrophoresis and biochemical properties. Based on inhibitor studies of Rhizobium trifolii MCS reported previously and database analysis, Arg173, Lys175, His211, and Glu308 were selected for site-directed mutagenesis in order to identify amino acid residues essential for substrate binding and/or catalysis. Five different mutant enzymes (R173G, K175M, H211L, K175M/H211L, and E308Q) were prepared and then subjected to steady-state kinetic studies. The kinetic data measured for the mutants suggest that Lys175 and His211 participate in the formation of malonyl-AMP, whereas Glu308 may play a role in malonate binding.  相似文献   

5.
We investigate the sequence and structural properties of RNA-protein interaction sites in 211 RNA-protein chain pairs, the largest set of RNA-protein complexes analyzed to date. Statistical analysis confirms and extends earlier analyses made on smaller data sets. There are 24.6% of hydrogen bonds between RNA and protein that are nucleobase specific, indicating the importance of both nucleobase-specific and -nonspecific interactions. While there is no significant difference between RNA base frequencies in protein-binding and non-binding regions, distinct preferences for RNA bases, RNA structural states, protein residues, and protein secondary structure emerge when nucleobase-specific and -nonspecific interactions are considered separately. Guanine nucleobase and unpaired RNA structural states are significantly preferred in nucleobase-specific interactions; however, nonspecific interactions disfavor guanine, while still favoring unpaired RNA structural states. The opposite preferences of nucleobase-specific and -nonspecific interactions for guanine may explain discrepancies between earlier studies with regard to base preferences in RNA-protein interaction regions. Preferences for amino acid residues differ significantly between nucleobase-specific and -nonspecific interactions, with nonspecific interactions showing the expected bias towards positively charged residues. Irregular protein structures are strongly favored in interactions with the protein backbone, whereas there is little preference for specific protein secondary structure in either nucleobase-specific interaction or -nonspecific interaction. Overall, this study shows strong preferences for both RNA bases and RNA structural states in protein-RNA interactions, indicating their mutual importance in protein recognition.  相似文献   

6.
Substitutions of individual amino acids in proteins may be under very different evolutionary restraints depending on their structural and functional roles. The Environment Specific Substitution Table (ESST) describes the pattern of substitutions in terms of amino acid location within elements of secondary structure, solvent accessibility, and the existence of hydrogen bonds between side chains and neighbouring amino acid residues. Clearly amino acids that have very different local environments in their functional state compared to those in the protein analysed will give rise to inconsistencies in the calculation of amino acid substitution tables. Here, we describe how the calculation of ESSTs can be improved by discarding the functional residues from the calculation of substitution tables. Four categories of functions are examined in this study: protein–protein interactions, protein–nucleic acid interactions, protein–ligand interactions, and catalytic activity of enzymes. Their contributions to residue conservation are measured and investigated. We test our new ESSTs using the program CRESCENDO, designed to predict functional residues by exploiting knowledge of amino acid substitutions, and compare the benchmark results with proteins whose functions have been defined experimentally. The new methodology increases the Z-score by 98% at the active site residues and finds 16% more active sites compared with the old ESST. We also find that discarding amino acids responsible for protein–protein interactions helps in the prediction of those residues although they are not as conserved as the residues of active sites. Our methodology can make the substitution tables better reflect and describe the substitution patterns of amino acids that are under structural restraints only.  相似文献   

7.
Yang YR  Zhu H  Fang N  Liang X  Zhong CQ  Tang XF  Shen P  Tang B 《FEBS letters》2008,582(17):2620-2626
Thermophilic WF146 protease matures efficiently at 60 degrees C, but quite slowly at low temperatures. In this report, seven amino acid residues involved in interactions between the mature domain and the propeptide of the enzyme were substituted by corresponding residues of psychrophilic subtilisin S41 to generate mutant Mut7 (S105G/G107D/Y117E/S136N/V143G/K144E/D145S). Mut3 (S105G/G107D/Y117E) and Mut4 (S136N/V143G/K144E/D145S) were also constructed. Transferring structural features from S41 endowed Mut7 with a remarkably increased maturation rate, as well as an improved caseinolytic activity at 25 degrees C. Moreover, Mut3 and Mut4 each obtained one of the above endowments. Further studies suggest that low-temperature activity and maturation rate are not necessarily linked, and uncoupling structural elements modulating the two properties may be advantageous to cold adaptation.  相似文献   

8.
9.
The dnaE gene of Escherichia coli encodes the DNA polymerase (α subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.  相似文献   

10.
Paramyosin is a major structural component of thick filaments isolated from many invertebrate muscles. The Caenorhabditis elegans paramyosin gene (unc-15) was identified by screening with specific antibodies an "exon-expression" library containing lacZ/nematode gene fusions. Short probes recovered from the library were used to identify bacteriophage lambda and cosmid clones that encompass the entire paramyosin (unc-15) gene. From these clones, numerous subclones containing epitopes reacting with anti-paramyosin sera were obtained, providing strong evidence that the initial cloned fragment was, in fact, derived from the structural gene for paramyosin. The complete nucleotide sequence of a 12 x 10(3) base-pair region spanning the gene was obtained. The gene is composed of ten short exons encoding a protein of 866 [corrected] amino acid residues. Paramyosin is highly similar to residues 267 to 1089 of myosin heavy chain rods. For most of its length, paramyosin appears to form an alpha-helical coiled-coil and shows the expected heptad repeat of hydrophobic amino acid residues and the 28-residue repeat of charged amino acids characteristic of myosin heavy chain rods. However, paramyosin differs from myosin in having non-helical extensions at both the N and C termini and an additional "skip" residue that interrupts the 28-residue repeat. The distribution of charges along the length of the paramyosin rod is also significantly different from that of myosin heavy chain rods. Potential charge-mediated interactions between paramyosin rods and between paramyosin and myosin rods were calculated using a model successfully applied previously to the analysis of the myosin rod sequences. Myosin rods aligned in parallel show optimal charge-charge interactions at multiples of 98 residue staggers (i.e. at axial displacements of multiples of 143 A). Paramyosin rods, in contrast, appear to interact optimally at parallel staggers of 493 residues (i.e. at axial displacements of 720 A) but show only weak interaction peaks at 98 or 296 residues. Similar calculations suggest optimal interactions between paramyosin molecules and myosin rods and in their anti-parallel alignments. The implications of these results for the structure of the bare zone and the assembly of nematode thick filaments are discussed.  相似文献   

11.
Equilibrium and kinetic studies on the folding of a series of amino acid replacements at position 211 in the alpha subunit of tryptophan synthase from Escherichia coli were performed in order to determine the role of this position in the rate-limiting step in folding. Previous studies [Beasty, A. M., Hurle, M. R., Manz, J. T., Stackhouse, T., Onuffer, J. J., & Matthews, C. R. (1986) Biochemistry 25, 2965-2974] have shown that the rate-limiting step corresponds to the association/dissociation of the amino (residues 1-188) and carboxy (residues 189-268) folding units. In terms of the secondary structure, the amino folding unit consists of the first six strands and five alpha helices of this alpha/beta barrel protein. The carboxy folding unit comprises the remaining two strands and three alpha helices; position 211 is in strand 7. Replacement of the wild-type glycine at position 211 with serine, valine, and tryptophan at most alters the rate of dissociation of the folding units; association is not changed significantly. In contrast, glutamic acid and arginine dramatically decelerate and accelerate, respectively, both association and dissociation. The difference in effects is attributed to long-range electrostatic interactions for these charged side chains; steric effects and/or hydrogen bonding play lesser roles. When considered with previous data on replacements at other positions in the alpha subunit [Hurle, M. R., Tweedy, N. B., & Matthews, C. R. (1986) Biochemistry 25, 6356-6360], it is clear that beta strands 6 (in the amino folding unit) and 7 (in the carboxy folding unit and containing position 211) dock late in the folding process.  相似文献   

12.
The nucleotide sequence of the structural gene (nifH) of nitrogenase reductase (Fe protein) from R.meliloti 41 with its flanking ends is reported. The amino acid sequence of nitrogenase reductase was deduced from the DNA sequence. The predicted R.meliloti nitrogenase reductase protein consists of 297 amino acid residues, has a molecular weight of 32,740 daltons and contains 5 cysteine residues. The codon usage in the nifH gene is presented. In the 5' flanking region, sequences resembling to consensus sequences of bacterial control regions were found. Comparison of the R.meliloti nifH nucleotide and amino acid sequences with those from different nitrogen-fixing organisms showed that the amino acid sequences are more conserved than the nucleotide sequences. This structural conservation of nitrogenase reductase may be related to its function and may explain the conservation of the nifH gene during evolution.  相似文献   

13.
Gene 22 of bacteriophage T4 encodes a major prohead scaffolding core protein of 269 amino acid residues. From its nucleotide sequence the gene product (gp) 22 has a predicted Mr of 29.9 and a pI of 4.3. The protein is rich in charged residues (glutamic acid and lysine) and contains low amounts of proline and glycine and no cysteine residues. We suggest that gp22 undergoes limited proteolytic processing which eliminates the short C-terminal piece from the molecule during the early steps of prohead assembly. Most amino acid residues of the gp22 polypeptide chain (80%) have an alpha-helical conformation and form seven peculiar alpha-helices. A model suggesting the spatial organization of gp22 is presented. Three long alpha-helices numbered 1 (1A and 1B), 3, and 5 (5A and 5B) are packed in an antiparallel fashion along the major axis of the road-shaped molecule. Two rather short alpha-helices (2 and 4) are located at the distal and proximal ends of the protein molecule, respectively. Helix number 2, which is a proteolytic fragment of gp22 found in mature T4 heads, is packed with helices 1A and 3, similar to a novel element of supersecondary structure, the alpha alpha-corner. Helix number 4 probably interacts with the gp20 connector of the prohead. The implications of the structure of the gp22 molecule for the assembly of the prohead core are discussed.  相似文献   

14.
Tan  Shi  Ducret  Axel  Aebersold  Ruedi  Gantt  Elisabeth 《Photosynthesis research》1997,53(2-3):129-140
Polypeptides from the PS I holocomplex of the red alga P. cruentum, purified for microsequencing, confirmed that six LHC I polypeptides from SDS-PAGE are distinct apoproteins. Analysis of a cDNA clone, designated as LhcaR2, from a cDNA library, indicates that it shares major structural features with the recently cloned first red algal gene LhcaR1. The LhcaR2 is believed to encode the 21.0 kDa polypeptide of the LHC I complex from comparison of the deduced amino acid sequence and the microsequences of several tryptic digest fragments from the isolated polypeptide. As in chlorophytic and chromophytic LHCs, the essential residues for Chl-binding and helix stabilization in helices 1 and 3 are highly conserved. Relatedness between rhodophytes and the chlorophytes is also inferred from sequence conservation in the N-flanking regions of helices 1 and 3. Conversely, helix 2 exhibited the highest similarity between LHC sequences of Chl a/c-binding chromophytes and the Chl a-binding rhodophytes, with 11 of 22 residues identical or conservatively substituted. Moreover, whereas in chlorophytes, the Q and E Chl-binding residues are separated by seven amino acid residues, they are always separated by 8 residues in rhodophytes and chromophytes. Superimposition of the predicted LhcaR2 sequence with the LHC II model [Kühlbrandt et al. (1994) Nature 367: 614–621] shows the same structural features except shortened connecting sequence between helices 1 and 2 on the lumenal side. The chimeric nature of rhodophyte genes, with both chromophytic and chlorophytic features, leads to the suggestion that they reflect attributes of an intermediate stage in LHC apoprotein evolution.  相似文献   

15.
The alpha-mating pheromone receptor encoded by the yeast STE2 gene is a G protein coupled receptor that initiates signaling via a MAP kinase pathway that prepares haploid cells for mating. To establish the range of allowed amino acid substitutions within transmembrane segments of this receptor, we conducted extensive random mutagenesis of receptors followed by screening for receptor function. A total of 157 amino acid positions in seven different mutagenic libraries corresponding to the seven predicted transmembrane segments were analyzed, yielding 390 alleles that retain at least 60 % of normal signaling function. These alleles contained a total of 576 unique amino acid substitutions, including 61 % of all the possible amino acid changes that can arise from single base substitutions. The receptor exhibits a surprising tolerance for amino acid substitutions. Every amino acid in the mutagenized regions of the transmembrane regions could be substituted by at least one other residue. Polar amino acids were tolerated in functional receptors at 115 different positions (73 % of the total). Hydrophobic amino acids were tolerated in functional receptors at all mutagenized positions. Substitutions introducing proline residues were recovered at 53 % of all positions where they could be brought about by single base changes. Residues with charged side-chains could also be tolerated at 53 % of all positions where they were accessible through single base changes. The spectrum of allowed amino acid substitutions was characterized in terms of the hydrophobicity, radius of gyration, and charge of the allowed substitutions and mapped onto alpha-helical structures. By comparing the patterns of allowed substitutions with the recently determined structure of rhodopsin, structural features indicative of helix-helix interactions can be discerned in spite of the extreme sequence divergence between these two proteins.  相似文献   

16.
17.
The proteins present in gas vesicles of the cyanobacteria Anabaena flos-aquae and Microcystis sp. were separated by SDS-polyacrylamide gel electrophoresis. Each contained a protein of Mr 22K whose N-terminal amino acid sequences showed homology with that of the Calothrix sp. PCC 7601 gvpC gene product. The gvpC gene from A. flos-aquae was cloned and sequenced. The derived amino acid sequence for the gene product indicated a protein, GVPc, of 193 residues and Mr 21985 containing five highly conserved 33 amino acid repeats. The sequence was identical at the N-terminus to that of the Mr 22K protein present in gas vesicles and showed correspondence to seven tryptic peptides isolated from gas vesicles. This establishes that GVPc forms a second protein component of the gas vesicle, in addition to the main constituent, the 70 residue GVPa. Quantitative amino acid analysis of entire gas vesicles reveals that GVPc accounts for only 2.9% of the protein molecules and 8.2% of the mass present: this is insufficient to form the conical end caps of the gas vesicles. It is suggested that GVPc provides the hydrophilic outer surface of the gas vesicle wall; the 33 amino acid repeats may interact with the periodic structure provided by GVPa.  相似文献   

18.
19.
This is report of mutational analysis of higher plant 5'-methylthioadenosine nucleosidase (MTAN). We identified and characterized the gene encoding yellow lupine (Lupinus luteus) MTAN (LlMTAN). The role of active site amino acids residues Glu24, Phe134, Glu188 and Asp211 was analyzed by site-directed mutagenesis. The Glu24Gln and Asp211Asn substitutions completely abolished the enzyme activity. The Glu188Gln mutant showed only trace activity toward 5'-methylthioadenosine. These results indicate that these three amino acid residues are necessary for enzyme activity. Furthermore, as the result of replacement of Phe134 by less bulky leucine, LlMTAN acquired the ability to bind and hydrolyze S-adenosylhomocysteine. We also analyzed the sequence of the LlMTAN promoter region. It appeared that there may be a direct link between LlMTAN expression regulation and sulfate metabolism.  相似文献   

20.
H Zuber 《Biophysical chemistry》1988,29(1-2):171-179
Comparison of the primary structures of thermophilic, mesophilic and psychrophilic lactate dehydrogenase (LDH) reveals a multitude of temperature-related amino acid substitutions. In the substitutions amino acid residues occurring preferentially in thermophilic, mesophilic (psychrophilic) LDH were found. On this basis, amino acid residues could be classified in an order from typical thermophilic (thermostabilizing) to typical mesophilic (thermolabilizing, increasing dynamics of the enzyme molecule) residues. The temperature-dependent ratio between thermostabilizing and thermolabilizing amino acid residues forms the basis for the specific structural and functional properties of thermophilic or mesophilic LDH. It is interesting that there appears to be a relationship between this order from thermophilic to mesophilic amino acid residues and the type of bases coding for these individual residues in the translation step of protein biosynthesis. Temperature-related amino acid substitutions are based on temperature-related base substitutions. A possible mechanism of temperature adaptation of LDH through alternative selection of thermophilic and mesophilic amino acid residues at the level of tRNA (anticodon)-mRNA (codon) interactions is discussed. These temperature-adaptation processes are evolutionary events in which the evolution and structure of the genetic code are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号