首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guo ZY  Chang CC  Chang TY 《Biochemistry》2007,46(35):10063-10071
Acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) is a resident enzyme in the endoplasmic reticulum. ACAT1 is a homotetrameric protein and contains nine transmembrane domains (TMDs). His460 is a key active residue and is located within TMD7. Human ACAT1 has seven free Cys, but the recombinant ACAT1 devoid of free Cys retains full enzyme activity. To further probe the functionality of TMD7 (amino acids 446-460) and TMD8 (amino acids 466-481), we used a parental ACAT1 devoid of free Cys as the template to perform Cys-scanning mutagenesis within these regions. Each of the single Cys mutants was expressed in Chinese hamster ovary (CHO) cell line AC29 lacking endogenous ACAT1. We measured the effect of single Cys substitution on enzyme activity and used the Cu(1,10-phenanthroline)2SO4-mediated disulfide cross-linking method to probe possible interactions of engineered Cys between the two identical subunits. The results show that several residues in one subunit closely interact with the same residues in the other subunit; mutating these residues to Cys does not lead to large loss in enzyme activity. Helical wheel analysis suggests that these residues are located at one side of the coil. In contrast, mutating residues F453, A457, or H460 to Cys causes large loss in enzyme activity; the latter residues are located at the opposite side of the coil. A similar arrangement is found for residues in TMD8. Thus, helical coils in TMD7 and TMD8 have two distinct functional sides: one side is involved in substrate-binding/catalysis, while the other side is involved in subunit interaction.  相似文献   

2.
In this report, we sought to determine the putative active site residues of ACAT enzymes. For experimental purposes, a particular region of the C-terminal end of the ACAT protein was selected as the putative active site domain due to its high degree of sequence conservation from yeast to humans. Because ACAT enzymes have an intrinsic thioesterase activity, we hypothesized that by analogy with the thioesterase domain of fatty acid synthase, the active site of ACAT enzymes may comprise a catalytic triad of ser-his-asp (S-H-D) amino acid residues. Mutagenesis studies revealed that in ACAT1, S456, H460, and D400 were essential for activity. In ACAT2, H438 was required for enzymatic activity. However, mutation of D378 destabilized the enzyme. Surprisingly, we were unable to identify any S mutations of ACAT2 that abolished catalytic activity. Moreover, ACAT2 was insensitive to serine-modifying reagents, whereas ACAT1 was not. Further studies indicated that tyrosine residues may be important for ACAT activity. Mutational analysis showed that the tyrosine residue of the highly conserved FYXDWWN motif was important for ACAT activity. Furthermore, Y518 was necessary for ACAT1 activity, whereas the analogous residue in ACAT2, Y496, was not. The available data suggest that the amino acid requirement for ACAT activity may be different for the two ACAT isozymes.  相似文献   

3.
An S  Cho KH  Lee WS  Lee JO  Paik YK  Jeong TS 《FEBS letters》2006,580(11):2741-2749
To investigate a role for histidine residues in the expression of normal acyl-CoA:cholesterol acyltransferase (ACAT) activity, the histidine residues located at five different positions in two isoenzymes were substituted by alanine, based on the sequence homology between ACAT1 and ACAT2. Among the 10 mutants generated by baculovirus expression technology, H386A-ACAT1, H460A-ACAT1, H360A-ACAT2, and H399A-ACAT2 lost their enzymatic activity completely. A reduction in catalytic activity is unlikely to result from structural changes in the substrate-binding pocket, because their substrate-binding affinities were normal. However, the enzymatic activity of H386A-ACAT1 was restored to <37% of the level of the wild-type activity when cholesterol was replaced by 25-hydroxycholesterol as substrate. H527A-ACAT1 and H501A-ACAT2, termed carboxyl end mutants, exhibit activities of ∼96% and ∼75% of that of the wild-type. Interestingly, H425A-ACAT1 showed 59% of the wild-type activity, in contrast to its equivalent mutant, H399A-ACAT2. These results demonstrate that the histidine residues located at the active site are very crucial both for the catalytic activity of the enzyme and for distinguishing ACAT1 from ACAT2 with respect to enzyme catalysis and substrate specificity.  相似文献   

4.
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis and in the early stages of atherosclerosis. ACAT1 is an integral membrane protein with multiple transmembrane domains. Human ACAT1 contains nine cysteine residues; its activity is severely inhibited by various thiol-specific modification reagents including p-chloromercuribenzene sulfonic acid, suggesting that certain cysteine residue(s) might be near or at the active site. We constructed various ACAT1 mutants that contained either single cysteine to alanine substitution at various positions, contained a reduced number of cysteines, or contained no cysteine at all. Each of these mutants retained 20% or more of the wild-type ACAT activity. Therefore, cysteine is not essential for ACAT catalysis. For the cysteine-free enzyme, its basic kinetic properties and intracellular localization in Chinese hamster ovary cells were shown to be very similar to those of the wild-type enzyme. The availability of the cysteine-free ACAT1 will facilitate future ACAT structure function studies. Additional studies show that Cys467 is one of the major target sites that leads to p-chloromercuribenzene sulfonic acid-mediated ACAT1 inactivation, suggesting that Cys467 may be near the ACAT active site(s).  相似文献   

5.
Two ACAT sharing protein sequence homology near their C termini have been identified. Both proteins may span the endoplasmic reticulum (ER) membrane several times. There is good evidence implicating the role of ACAT1 in macrophage foam cell formation, and ACAT2 in intestinal cholesterol absorption. On the other hand, the functional roles of ACAT1 and ACAT2 in the VLDL or chylomicron assembly process are less clear. It is possible that both enzymes are able to form lipid droplets (which are present in the cytoplasm), and participate in lipoprotein assembly (which occurs in the ER lumen). To link the site of ACAT catalysis with its function, we propose that part of the ACAT catalytic site may reside within the lipid bilayer, allowing catalysis to be completed within the plane of the membrane. Cholesteryl esters (CE) produced in situ may burst into cytoplasmic lipid droplets, carrying phospholipid monolayers as their outer coats. In cells engaged in lipoprotein assembly and secretion, CE in the bilayer may be recognized by the specific protein microsomal triacylglycerol transfer protein (MTP), reaching out from the lumenal side of the membrane. MTP then lipidates the growing apolipoprotein B (apoB) chain with CE and TG during the early stages of apoB lipoprotein assembly.  相似文献   

6.
1. A set of monoclonal antibodies (Mab) was prepared against cathepsin B (CB) from rat preputial-gland, an organ characterized by rapidly-renewing cell populations, which is a uniquely enriched source of lysosomal enzymes, including CB. Minute amounts of CB are known to be transferred abruptly to the nuclear compartment in a variety of activated cells. 2. Since, on the basis of its stringent substrate requirements, CB was expected to function at limited protein loci in chromatin, Mab Line II-B4 was used to probe Western blots of chromatin fractions and selected proteins. 3. The Mab, which was not directed against the active site of CB, cross-reacted preferentially with histones 3 and 4 (H3 and H4) in acid-soluble fractions of chromatin from rat preputial-gland. Line II-B4 also recognized H3 and H4 selectively in calf thymus histones and among histones purified from a wide range of sources from yeast to man. HMG 1 was minimally immunoreactive among preputial gland constituents and carbonic anhydrase (CA) was also sensitive to the Mab. 4. The common determinants were not shared by any of the H1 series, nor by H2A, H2B, protein A24 or a wide range of natural and synthetic products. 5. Origin of the antigenicity was traced by chemical modifications of H3, H4 and CA to the critical contribution of arginine and hydrophobic amino acid residues in its immediate environment, indicating that Line II-B4 may be directed against an epitope comprising the specific binding-site of CB and its selective substrate(s). 6. These data suggest that certain highly conserved cellular constituents may be uniquely vulnerable to limited proteolysis in preproliferative cells responding to mitotic signals.  相似文献   

7.
8.
A rare form of human ACAT1 mRNA, containing the optional long 5'-untranslated region, is produced as a 4.3-kelonucleotide chimeric mRNA through a novel interchromosomal trans-splicing of two discontinuous RNAs transcribed from chromosomes 1 and 7. To investigate its function, we express the chimeric ACAT1 mRNA in Chinese hamster ovary cells and show that it can produce a larger ACAT1 protein, with an apparent molecular mass of 56 kDa on SDS-PAGE, in addition to the normal, 50-kDa ACAT1 protein, which is produced from the ACAT1 mRNAs without the optional long 5'-untranslated repeat. To produce the 56-kDa ACAT1, acat1 sequences located at both chromosomes 7 and 1 are required. The 56-kDa ACAT1 can be recognized by specific antibodies prepared against the predicted additional amino acid sequence located upstream of the N-terminal of the ACAT1(ORF). The translation initiation codon for the 56-kDa protein is GGC, which encodes for glycine, as deduced by mutation analysis and mass spectrometry. Similar to the 50-kDa protein, when expressed alone, the 56-kDa ACAT1 is located in the endoplasmic reticulum and is enzymatically active. The 56-kDa ACAT1 is present in native human cells, including human monocyte-derived macrophages. Our current results show that the function of the chimeric ACAT1 mRNA is to increase the ACAT enzyme diversity by producing a novel isoenzyme. To our knowledge, our result provides the first mammalian example that a trans-spliced mRNA produces a functional protein.  相似文献   

9.
Acyl-CoA:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis and is involved in atherosclerosis. ACAT-1 protein is located mainly in the ER. The hydropathy plot suggests that ACAT-1 protein contains multiple transmembrane segments. We inserted either the hemagglutinin tag or the HisT7 tag at various hydrophilic regions within the human ACAT-1 protein and used immunofluorescence microscopy to determine the topography of the tagged proteins expressed in mutant Chinese hamster ovary cells lacking endogenous ACAT. All of the tagged proteins are located mainly in the ER and retain full or partial enzyme activities. None of the tagged proteins produces detectable intracellular degradation intermediates. Treating cells with digitonin at 5 micrograms/ml permeabilizes the plasma membranes while leaving the ER membranes sealed; in contrast, treating cells with 0.25% Triton X-100 or with cold methanol permeabilizes both the plasma membranes and the ER membranes. After appropriate permeabilization, double immunostaining using antibodies against the N-terminal region and against the inserted tag were used to visualize various regions of the tagged protein. The results show that human ACAT-1 in the ER contains seven transmembrane domains.  相似文献   

10.
Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.  相似文献   

11.
A second form of the enzyme acyl-CoA:cholesterol acyltransferase, ACAT2, has been identified. To explore the hypothesis that the two ACAT enzymes have separate functions, the membrane topologies of ACAT1 and ACAT2 were examined. A glycosylation reporter and FLAG epitope tag sequence was appended to a series of ACAT cDNAs truncated after each predicted transmembrane domain. Fusion constructs were assembled into microsomal membranes, in vitro, and topologies were determined based on glycosylation site use and accessibility to exogenous protease. The accessibility of the C-terminal FLAG epitope in constructs was determined by immunofluorescence microscopy of permeabilized transfected cells. Both ACAT1 and ACAT2 span the membrane five times with their N termini in the cytosol and C termini in the ER lumen. The fourth transmembrane domain is located in a different region for each protein, placing the putative active site ACAT1 serine (Ser(269)) in the cytosol and the analogous residue in ACAT2 (Ser(249)) in the ER lumen. Mutation of these serines inactivated the ACAT enzymes. The outcome is consistent with the hypothesis that cholesterol ester formation by ACAT2 may be coupled to lipoprotein particle assembly and secretion, whereas ACAT1 may function primarily to maintain the balance of free and esterified cholesterol intracellularly.  相似文献   

12.
Ribonucleotide reductase catalyzes all de novo synthesis of deoxyribonucleotides. The mammalian enzyme consists of two non-identical subunits, the R1 and R2 proteins, each inactive alone. The R1 subunit contains the active site, whereas the R2 protein harbors a binuclear iron center and a tyrosyl free radical essential for catalysis. It has been proposed that the radical properties of the R2 subunit are transferred approximately 35 A to the active site of the R1 protein, through a coupled electron/proton transfer along a conserved hydrogen-bonded chain, i.e. a radical transfer pathway (RTP). To gain a better insight into the properties and requirements of the proposed RTP, we have used site-directed mutagenesis to replace the conserved tyrosine 370 in the mouse R2 protein with tryptophan or phenylalanine. This residue is located close to the flexible C terminus, known to be essential for binding to the R1 protein. Our results strongly indicate that Tyr(370) links the RTP between the R1 and R2 proteins. Interruption of the hydrogen-bonded chain in Y370F inactivates the enzyme complex. Alteration of the same chain in Y370W slows down the RTP, resulting in a 58 times lower specific activity compared with the native R2 protein and a loss of the free radical during catalysis.  相似文献   

13.
Chitinase is an enzyme used by insects to degrade the structural polysaccharide, chitin, during the molting process. Tryptophan 145 (W145) of Manduca sexta (tobacco hornworm) chitinase is a highly conserved residue found within a second conserved region of family 18 chitinases. It is located between aspartate 144 (D144) and glutamate 146 (E146), which are putative catalytic residues. The role of the active site residue, W145, in M. sexta chitinase catalysis was investigated by site-directed mutagenesis. W145 was mutated to phenylalanine (F), tyrosine (Y), isoleucine (I), histidine (H), and glycine (G). Wild-type and mutant forms of M. sexta chitinases were expressed in a baculovirus-insect cell line system. The chitinases secreted into the medium were purified and characterized by analyzing their catalytic activity and substrate or inhibitor binding properties. The wild-type chitinase was most active in the alkaline pH range. Several of the mutations resulted in a narrowing of the range of pH over which the enzyme hydrolyzed the polymeric substrate, CM-Chitin-RBV, predominantly on the alkaline side of the pH optimum curve. The range was reduced by about 1 pH unit for W145I and W145Y and by about 2 units for W145H and W145F. The W145G mutation was inactive. Therefore, the hydrophobicity of W145 appears to be critical for maintaining an abnormal pKa of a catalytic residue, which extends the activity further into the alkaline range. All of the mutant enzymes bound to chitin, suggesting that W145 was not essential for binding to chitin. However, the small difference in Km's of mutated enzymes compared to Km values of the wild-type chitinase towards both the oligomeric and polymeric substrates suggested that W145 is not essential for substrate binding but probably influences the ionization of a catalytically important group(s). The variations in kcat's among the mutated enzymes and the IC50 for the transition state inhibitor analog, allosamidin, indicate that W145 also influences formation of the transition state during catalysis.  相似文献   

14.
The mab-21 gene was first identified because of its requirement for ray identity specification in Caenorhabditis elegans. It is now known to constitute a family of genes that are highly conserved from vertebrates to invertebrates, and two homologs, Mab21l1 and Mab21l2, have been identified in many species. We describe the generation of Mab21l1-deficient mice with defects in eye and preputial gland formation. The mutant mouse eye has a rudimentary lens resulting from insufficient invagination of the lens placode caused by deficient proliferation. Chimera analyses suggest that the lens placode is affected in a cell-autonomous manner, although Mab21l1 is expressed in both the lens placode and the optic vesicle. The defects in lens placode development correlate with delayed and insufficient expression of Foxe3, which is also required for lens development, while Maf, Sox2, Six3 and PAX6 levels are not significantly affected. Significant reduction of Mab21l1 expression in the optic vesicle and overlying surface ectoderm in Sey homozygotes indicates that Mab21l1 expression in the developing eye is dependent upon the functions of Pax6 gene products. We conclude that Mab21l1 expression dependent on PAX6 is essential for lens placode growth and for formation of the lens vesicle; lack of Mab21l1 expression causes reduced expression of Foxe3 in a cell-autonomous manner.  相似文献   

15.
A beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III; short-chain condensing enzyme) has been partly purified from pea leaves. The enzyme, which had acetyl-CoA:ACP acyltransferase (ACAT) activity, was resolved from a second, specific, ACAT protein. The KAS III enzyme had a derived molecular mass of 42 kDa (from its cDNA sequence) and operated as a dimer. Its enzymological characteristics were similar to those of two other plant KAS III enzymes except for its inhibition by thiolactomycin. A derivative of thiolactomycin containing a longer (C8 saturated) hydrophobic side-chain (compound 332) was a more effective inhibitor of pea KAS III and showed competitive inhibition towards malonyl-ACP whereas thiolactomycin showed uncompetitive characteristics at high concentrations. This difference may be due to the better fit of compound 332 into a hydrophobic pocket at the active site. A full-length cDNA for the pea KAS III was isolated. This was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in order to facilitate subsequent purification. Demonstrated activity in preparations from E. coli confirmed that the cDNA encoded a KAS III enzyme. Furthermore, the expressed KAS III had ACAT activity, showing that the latter was inherent. The derived amino acid sequence of the pea cDNA showed 81-87% similarity to that for other plant dicotyledon KAS IIIs, somewhat less for Allium porrum (leek, 71%) and for Porphyra spp. (62%), Synechocystis spp. (65%) and various bacteria (42-65%). The pea KAS III exhibited four areas of homology, three of which were around the active-site Cys(123), His(323) and Asn(353). In addition, a stretch of 23 amino acids (residues 207-229 in the pea KAS III) was almost completely conserved in the plant KAS IIIs. Modelling this stretch showed they belonged to a peptide fragment that fitted over the active site and contained segments suggested to be involved in substrate binding and in conformational changes during catalysis, as well as an arginine suggested to participate in the acid-base catalytic mechanism.  相似文献   

16.
Site-specific mutagenesis was used to replace the three histidine residues of Escherichia coli asparaginase II (EcA2) with other amino acids. The following enzyme variants were studied: [H87A]EcA2, [H87L]EcA2, [H87K]EcA2, [H183L]EcA2 and [H197L]EcA2. None of the mutations substantially affected the Km for L-aspartic acid beta-hydroxamate or impaired aspartate binding. The relative activities towards L-Asn, L-Gln, and l-aspartic acid beta-hydroxamate were reduced to the same extent, with residual activities exceeding 10% of the wild-type values. These data do not support a number of previous reports suggesting that histidine residues are essential for catalysis. Spectroscopic characterization of the modified enzymes allowed the unequivocal assignment of the histidine resonances in 1H-NMR spectra of asparaginase II. A histidine signal previously shown to disappear upon aspartate binding is due to His183, not to the highly conserved His87. The fact that [H183L]EcA2 has normal activity but greatly reduced stability in the presence of urea suggests that His183 is important for the stabilization of the native asparaginase tetramer. 1H-NMR and fluorescence spectroscopy indicate that His87 is located in the interior of the protein, possibly adjacent to the active site.  相似文献   

17.
The pH dependence of matrix metalloproteinase (MMP) catalysis is described by a broad bell-shaped curve, indicating the involvement of two unspecified ionizable groups in proteolysis. Stromelysin-1 has a third pK(a) near 6, resulting in a uniquely sharp acidic catalytic optimum, which has recently been attributed to His(224). This suggests the presence of a critical, but unidentified, S1' substructure. Integrating biochemical characterizations of inhibitor-enzyme interactions with active site topography from corresponding crystal structures, we isolated contributions to the pH dependence of catalysis and inhibition of active site residues Glu(202) and His(224). The acidic pK(a) 5.6 is attributed to the Glu(202).zinc.H(2)O complex, consistent with a role for the invariant active site Glu as a general base in MMP catalysis. The His(224)-dependent substructure is identified as a tripeptide (Pro(221)-Leu(222)-Tyr(223)) that forms the substrate cleft lower wall. Substrate binding induces a beta-conformation in this sequence, which extends and anchors the larger beta-sheet of the enzyme. substrate complex and appears to be essential for productive substrate binding. Because the PXY tripeptide is strictly conserved among MMPs, this "beta-anchor" may represent a common motif required for macromolecular substrate hydrolysis. The striking acidic profile of stromelysin-1 defined by the combined ionization of Glu(202) and His(224) allows the design of highly selective inhibitors.  相似文献   

18.
Targeted deletion of acyl-CoA:cholesterol acyltransferase 2 (ACAT2) (A2), especially in the liver, protects hyperlipidemic mice from diet-induced hypercholesterolemia and atherosclerosis, whereas the deletion of ACAT1 (A1) is not as effective, suggesting ACAT2 may be the more appropriate target for treatment of atherosclerosis. Among the numerous ACAT inhibitors known, pyripyropene A (PPPA) is the only compound that has high selectivity (>2000-fold) for inhibition of ACAT2 compared with ACAT1. In the present study we sought to determine the PPPA interaction site of ACAT2. To achieve this goal we made several chimeric proteins where parts of ACAT2 were replaced by the analogous region of ACAT1. Differences in the amino acid sequence and the membrane topology were utilized to design the chimeras. Among chimeras, A2:1-428/A1:444-550 had 50% reduced PPPA selectivity, whereas C-terminal-truncated ACAT2 mutant A2:1-504 (C-terminal last 22 amino acids were deleted) remained selectively inhibited, indicating the PPPA-sensitive site is located within a region between amino acids 440 and 504. Three additional chimeras within this region helped narrow down the PPPA-sensitive site to a region containing amino acids 480-504, representing the fifth putative transmembrane domain of ACAT2. Subsequently, for this region we made single amino acid mutants where each amino acid in ACAT2 was individually changed to its ACAT1 counterpart. Mutation of Q492L, V493L, S494A resulted in only 30, 50, and 70% inhibition of the activity by PPPA, respectively (as opposed to greater than 95% with the wild type enzyme), suggesting these three residues are responsible for the selective inhibition by PPPA of ACAT2. Additionally, we found that PPPA non-covalently interacts with ACAT2 apparently without altering the oligomeric structure of the protein. The present study provides the first evidence for a unique motif in ACAT2 that can be utilized for making an ACAT2-specific drug.  相似文献   

19.
Potential domain-domain docking residues, identified from the x-ray structure of the Clostridium symbiosum apoPPDK, were replaced by site-directed mutagenesis. The steady-state and transient kinetic properties of the mutant enzymes were determined as a way of evaluating docking efficiency. PPDK mutants, in which one of two stringently conserved docking residues located on the N-terminal domain (Arg(219) and Glu(271)) was substituted, displayed largely unimpeded catalysis of the phosphoenolpyruvate partial reaction at the C-terminal domain, but significantly impaired catalysis (>10(4)) of the ATP pyrophosphorylation of His(455) at the N-terminal domain. In contrast, alanine mutants of two potential docking residues located on the N-terminal domain (Ser(262) and Lys(149)), which are not conserved among the PPDKs, exhibited essentially normal catalytic turnover. Arg(219) and Glu(271) were thus proposed to play an important role in guiding the central domain and, hence, the catalytic His(455) into position for catalysis. Substitution of central domain residues Glu(434)/Glu(437) and Thr(453), the respective docking partners of Arg(219) and Glu(271), resulted in mutants impaired in catalysis at the ATP active site. The x-ray crystal structure of the apo-T453A PPDK mutant was determined to test for possible misalignment of residues at the N-terminal domain-central domain interface that might result from loss of the Thr(453)-Glu(271) binding interaction. With the exception of the mutation site, the structure of T453A PPDK was found to be identical to that of the wild-type enzyme. It is hypothesized that the two Glu(271) interfacial binding sites that remain in the T453A PPDK mutant, Thr(453) backbone NH and Met(452) backbone NH, are sufficient to stabilize the native conformation as observed in the crystalline state but may be less effective in populating the reactive conformation in solution.  相似文献   

20.
The specific binding and nature of the epitope recognized by monoclonal antibody (Mab) 1H10, which binds an antigen expressed on human cervical tumors, was characterized by enzyme digestion, lectin competition assay and immuno-electron microscopy. Membrane homogenates of CaSki cervical carcinoma cells were digested with various enzymes, then analysed by SDS-PAGE and immunoblotting. Cells grown on coverslips were treated with various enzymes and in situ binding of Mab 1H10 to cells was analysed by electron microscopy. The ability of lectin-conjugates to block Mab 1H10 binding to CaSki cells was also examined. Treatment of samples with sodium periodate abrogated antigen recognition by Mab 1H10. Neuraminidase and hyaluronidase digestion decreased but did not eliminate Mab 1H10 binding to cells in situ. Chondroitinase ABC digestion, in contrast, removed Mab 1H10 binding sites both in vitro and in situ. Trypsin and chymotrypsin digestion of cell membrane homogenates decreased the molecular weight of the Mab 1H10 antigen but did not decrease the binding intensity. Wheat germ agglutinin (WGA) strongly bound to CaSki cells and partially blocked Mab 1H10 binding, indicating that the antigen contains N-acetyl-galactosamine residues at or near the epitope recognized by Mab 1H10. Ricinus communis agglutinin (RCA) exhibited a similar binding pattern to WGA. However, concanavalin A bound only weakly to CaSki cells and was ineffective at blocking Mab 1H10 binding. The tumor-associated antigen recognized by Mab 1H10 is concluded to be a chondroitin sulphate glycoprotein or proteoglycan rather than a mucopolysaccharide or lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号