首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To guarantee the endemic genetic background of the isolates obtained in yeast isolation programs, it is necessary to differentiate between endemic and commercial strains because the progressive use of commercial yeast in wine areas around the world would affect the autochthonous yeast populations. METHODS AND RESULTS: Mitochondrial DNA restriction analysis, electrophoretic karyotyping and random amplification of polymorphic DNA (RAPD) were evaluated as experimental approaches to correlate genomic polymorphism and geographic origin of native wine yeast strains. The three molecular methods were capable of detecting a European commercial strain among native Chilean strains; however, RAPD proved to have the best performance. CONCLUSIONS: The molecular polymorphism analysis is useful to evaluate the geographical origin of native yeast isolates and confirms or refutes the genetic background of currently marketed strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This study permits a genetic characterization of native yeast populations and confirms its utility as a tool for evaluating if a native isolate derives from the region where it was collected, permitting, furthermore, to develop studies on the evolution of native yeast populations and to evaluate the effect of introduced yeasts on these populations.  相似文献   

2.
Aims: To study genomic and phenotypic changes in wine yeasts produced in short time periods analysing yeast strains possibly derived from commercial strains recently dispersed. Methods and Results: We conducted a genomic and phenotypic comparison between the commercial yeast strain EC1118 and two novel strains (LV CB and L‐957) isolated from different wine areas industrially intervened <20 years ago. Molecular analysis by amplified fragment length polymorphism (AFLP) and RAPD‐PCR was not able to distinguish between these strains. However, comparative genomic hybridization (aCGH) showed discrete DNA gains and losses that allowed unequivocal identification of the strains. Furthermore, analysis of aCGH data supports the hypothesis that strains LV CB and L‐957 are derivatives from strain EC1118. Finally, scarce phenotypic differences in physiological and metabolic parameters were found among the strains. Conclusion: The wine yeasts have a very dynamic genome that accumulates changes in short time periods. These changes permit the unique genomic identification of the strains. Significance and Impact of the Study: This study permits the evaluation of microevolutive events in wine yeasts and its relationship with the phenotype in this species.  相似文献   

3.
Aims:  To study the yeast diversity of Nigerian palm wines by comparison with other African strains.
Methods and Results:  Twenty-three Saccharomyces cerevisiae strains were obtained from palm wine samples collected at four locations in eastern Nigeria, and characterized using different molecular techniques: internal transcribed spacer restriction fragment length polymorphism and sequence analysis, pulsed field gel electrophoresis, inter delta typing and microsatellite multilocus analysis. These techniques revealed that palm wine yeasts represent a group of closely related strains that includes other West African isolates (CBS400, NCYC110, DVPG6044). Population analysis revealed an excess of homozygote strains and an allelic richness similar to wine suggestive of local domestication. Several other African yeast strains were not connected to this group. Ghana sorghum beer strains and other African strains (DBVPG1853 and MUCL28071) displayed strikingly high relatedness with European bread, beer or wine strains, and the genome of strain MUCL30909 contained African and wine-type alleles, indicating its hybrid origin.
Conclusions:  Nigerian palm wine yeast represents a local specific yeast flora, whereas a European origin or hybrid was suspected for several other Africa isolates.
Significance and Impact of the Study:  This study presents the first genetic characterization of an autochthonous African palm wine yeast population and confirms the idea that human intervention has favoured yeast migration.  相似文献   

4.
Gerke JP  Chen CT  Cohen BA 《Genetics》2006,174(2):985-997
Sporulation is a well-studied process executed with varying efficiency by diverse yeast strains. We developed a high-throughput method to quantify yeast sporulation efficiency and used this technique to analyze a line cross between a high-efficiency oak tree isolate and a low-efficiency wine strain. We find that natural variation in sporulation efficiency mirrors natural variation in higher eukaryotes: it shows divergence between isolated populations, arises from loci of major effect, and exhibits epistasis. We show that the lower sporulation efficiency of the wine strain results from a failure to initiate sporulation, rather than from slower kinetics of meiosis and spore formation. The two strains differentially regulate many genes involved in aerobic respiration, an essential pathway for sporulation, such that the oak tree strain appears better poised to generate energy from this pathway. We also report that a polymorphism in RME1 that affects sporulation efficiency in laboratory strains also cosegregates with significant phenotypic differences in our cross of natural isolates. These results lay the groundwork for the study of variation in sporulation efficiency among natural isolates of yeast.  相似文献   

5.
Molecular and physiological analyses were used to study the evolution of the yeast population, from alcoholic fermentation to biological aging in the process of "fino" sherry wine making. The four races of "flor" Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, and rouxii) exhibited identical restriction patterns for the region spanning the internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) and the 5.8S rRNA gene, but this pattern was different, from those exhibited by non-flor S. cerevisiae strains. This flor-specific pattern was detected only after wines were fortified, never during alcoholic fermentation, and all the strains isolated from the velum exhibited the typical flor yeast pattern. By restriction fragment length polymorphism of mitochondrial DNA and karyotyping, we showed that (i) the native strain is better adapted to fermentation conditions than commercial strains; (ii) two different populations of S. cerevisiae strains are involved in the process of elaboration, of fino sherry wine, one of which is responsible for must fermentation and the other, for wine aging; and (iii) one strain was dominant in the flor population integrating the velum from sherry wines produced in González Byass wineries, although other authors have described a succession of races of flor S. cerevisiae during wine aging. Analyzing all these results together, we conclude that yeast population dynamics during biological aging is a complex phenomenon and differences between yeast populations from different wineries can be observed.  相似文献   

6.
One thousand six hundred and twenty yeast isolates were obtained from 54 spontaneous fermentations performed from grapes collected in 18 sampling sites of three vineyards (Vinho Verde Wine Region in northwest Portugal) during the 2001-2003 harvest seasons. All isolates were analyzed by mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) and a pattern profile was verified for each isolate, resulting in a total of 297 different profiles, that all belonged to the species Saccharomyces cerevisiae. The strains corresponding to seventeen profiles showed a wider temporal and geographical distribution, being characterized by a generalized pattern of sporadic presence, absence and reappearance. One strain (ACP10) showed a more regional distribution with a perennial behavior. In different fermentations ACP10 was either dominant or not, showing that the final outcome of fermentation was dependent on the specific composition of the yeast community in the must. Few of the grape samples collected before harvest initiated a spontaneous fermentation, compared to the samples collected after harvest, in a time frame of about 2 weeks. The associated strains were also much more diversified: 267 patterns among 1260 isolates compared to 30 patterns among 360 isolates in the post- and pre-harvest samples, respectively. Fermenting yeast populations have never been characterized before in this region and the present work reports the presence of commercial yeast strains used by the wineries. The present study aims at the development of strategies for the preservation of biodiversity and genetic resources as a basis for further strain development.  相似文献   

7.
Mycotoxin production from fungi isolated from grapes   总被引:6,自引:0,他引:6  
AIMS: In order to assess the potential for producing mycotoxins, fungi were isolated from wine producing grapes. METHODS AND RESULTS: The isolates were identified and Penicillium expansum, the most well recognized mycotoxin producer, was analysed for mycotoxin production by TLC. Many of the strains produced patulin and/or citrinin, often depending on whether they were grown on a grape or yeast extract sucrose media. CONCLUSION: Citrinin was produced by all strains grown in the yeast extract sucrose medium, but only one strain (from 51) was able to produce this compound in grape juice medium. Patulin was produced in the yeast extract medium by 20 strains and in grape juice medium by 33 strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of mycotoxins in wine producing grapes is discussed. Grapes contamination with patulin seems not to contribute to wine contamination, and no ochratoxin producing fungi was identified.  相似文献   

8.
AIMS: To differentiate nine industrial wine strains of Saccharomyces cerevisiae using microsatellite (simple sequence repeats, SSR) markers. METHODS AND RESULTS: Six of the strains were indigenous yeasts currently used as high-density starter monocultures by the Uruguayan wine industry. Unequivocal differentiation of these six native strains and three commercial S. cerevisiae wine strains was achieved by PCR amplification and polymorphism analysis of loci containing microsatellite markers. CONCLUSION: We recommend the use of this reproducible and simple molecular method to routinely discriminate wine yeast strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Microsatellites are superior to other methods for typing yeasts because the results can be exchanged as quantitative data. Knowledge of the frequencies of the alleles for different SSR markers will eventually lead to an accurate typing method to identify industrial wine yeast strains.  相似文献   

9.
AIM: To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS: Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS: The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY: Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.  相似文献   

10.
The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.  相似文献   

11.
AIMS: To study the diversity and dynamics of indigenous Saccharomyces wine populations during Malbec spontaneous fermentation, a representative Patagonian red wine, at both industrial and laboratory scale. METHODS AND RESULTS: Two molecular techniques, including restriction fragment length polymorphism of mitochondrial (mt) DNA and polymorphism of amplified delta interspersed element sequences, were used for characterization of indigenous yeasts at strain level. The mtDNA restriction patterns showed the major discriminative power; however, by combining the two molecular approaches it was possible to distinguish a larger number of strains and, therefore, draw more representative conclusions about yeast diversity. Although a great diversity of wild Saccharomyces cerevisiae strains was observed, only nine represented more than half of the total Saccharomyces yeast biota analysed; five of these were common and took over the Malbec must fermentation in both vinifications. CONCLUSIONS: Many different indigenous S. cerevisiae strains were identified; nevertheless, the dominant strains in both industrial and laboratory vinification processes were just a few and the same. SIGNIFICANCE AND IMPACT OF THE STUDY: Small-scale fermentation appears to be a valuable tool in winemaking, one especially helpful in evaluating microbiological aspects of as well as possible interactions between inoculated selected strains and native strains.  相似文献   

12.
AIMS: In order to evaluate differences between chickpea rhizobial populations from three geographical areas in southern Portugal (Beja, Elvas and Evora), isolates from the three regions were obtained and analysed. METHODS AND RESULTS: The genetic characterization of the isolates was done by plasmid profiles and restriction analysis of the nifH gene. Symbiotic efficiency of the isolates was also determined. Relationships between geographical origin, symbiotic efficiency and molecular characteristics were established. Beja soil revealed a larger rhizobia population as well as the presence of some of the isolates with higher symbiotic efficiency values. Isolates with a single plasmid showed a significantly higher symbiotic efficiency. CONCLUSION: Genetic and phenotypic differences were detected between the natural rhizobial populations from the three locations. SIGNIFICANCE AND IMPACT OF THE STUDY: The different yield potential with cultivars of chickpea usually obtained in the three regions of southern Portugal could be due to their different natural rhizobial populations.  相似文献   

13.
AIMS: Use of microsatellite PCR to monitor populations of Saccharomyces cerevisiae strains during fermentation of grape juice. METHOD AND RESULTS: Six commercial wine strains of S. cerevisiae were screened for polymorphism at the SC8132X locus using a modified rapid PCR identification technique. The strains formed four distinct polymorphic groups that could be readily distinguished from one another. Fermentations inoculated with mixtures of three strains polymorphic at the SC8132X locus were monitored until sugar utilization was complete, and all exhibited a changing population structure throughout the fermentation. CONCLUSIONS: Rapid population quantification demonstrated that wine fermentations are dynamic and do not necessarily reflect the initial yeast population structure. One or more yeast strains were found to dominate at different stages of the fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The population structure of S. cerevisiae during mixed culture wine fermentation is dynamic and could modify the chemical composition and flavour profile of wine.  相似文献   

14.
AIMS: To assess suitability of Multi Locus Sequence Typing (MLST) for investigating the biodiversity of wine yeast strains. This method was compared with established ones like microsatellite analysis or amplification of genomic regions flanked by repeated (delta) elements. METHODS AND RESULTS: DNA fragments were amplified and sequenced for 26 loci representing housekeeping genes, open reading frames (ORFs) of unknown functions or intergenic regions. A set of seven loci was tested on 84 Saccharomyces cerevisiae strains, including 65 strains isolated from traditional wineries in Lebanon, commercial wine strains and Asian isolates. An overall sequence diversity of 2.05% was observed, consisting of single nucleotide polymorphisms, 60% of them occurring in a heterozygous state. The number of polymorphic sites per locus varied between 4 and 14. The same set of strains was analysed by microsatellite typing on six polymorphic loci and by interdelta amplification. CONCLUSIONS: Clustering of MLST profiles clearly differentiated the Asian group of strains from Lebanese and European commercial strains that appear closely related. The current MLST scheme appears less discriminatory (92.27%) on closely related wine yeasts than microsatellite or interdelta typing (>99%). SIGNIFICANCE AND IMPACT OF THE STUDY: MLST is a highly reliable method for relatedness inference and promising for wine yeast typing.  相似文献   

15.
Molecular and physiological analyses were used to study the evolution of the yeast population, from alcoholic fermentation to biological aging in the process of “fino” sherry wine making. The four races of “flor” Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, and rouxii) exhibited identical restriction patterns for the region spanning the internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) and the 5.8S rRNA gene, but this pattern was different, from those exhibited by non-flor S. cerevisiae strains. This flor-specific pattern was detected only after wines were fortified, never during alcoholic fermentation, and all the strains isolated from the velum exhibited the typical flor yeast pattern. By restriction fragment length polymorphism of mitochondrial DNA and karyotyping, we showed that (i) the native strain is better adapted to fermentation conditions than commercial strains; (ii) two different populations of S. cerevisiae strains are involved in the process of elaboration, of fino sherry wine, one of which is responsible for must fermentation and the other, for wine aging; and (iii) one strain was dominant in the flor population integrating the velum from sherry wines produced in González Byass wineries, although other authors have described a succession of races of flor S. cerevisiae during wine aging. Analyzing all these results together, we conclude that yeast population dynamics during biological aging is a complex phenomenon and differences between yeast populations from different wineries can be observed.  相似文献   

16.
We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8-43 strains per fermentation) was associated with high percentage (60-100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0-40%) corresponded to a rather low strain diversity (1-10 strains per fermentation).For the majority of the populations, observed heterozygosity (Ho) was about two to five times lower than the expected heterozygosity (He). The inferred ancestry showed a very high degree of admixture and divergence was observed between both grape variety and geographical region. Analysis of molecular variance showed that 81-93% of the total genetic variation existed within populations, while significant differentiation within the groups could be detected. Results from AMOVA analysis and clustering of allelic frequencies agree in the distinction of genetically more dispersed populations from the larger wine region compared to the less extended region. Our data show that grape variety is a driver of populational structures, because vineyards with distinct varieties harbor genetically more differentiated S. cerevisiae populations. Conversely, S. cerevisiae strains from vineyards in close proximity (5-10 km) that contain the same grape variety tend to be less divergent. Populational similarities did not correlate with the distance between vineyards of the two wine regions. Globally, our results show that populations of S. cerevisiae in vineyards may occur locally due to multi-factorial influences, one of them being the grape variety.  相似文献   

17.
Fermented beverages and foods have played a significant role in most societies worldwide for millennia. To better understand how the yeast species Saccharomyces cerevisiae, the main fermenting agent, evolved along this historical and expansion process, we analysed the genetic diversity among 651 strains from 56 different geographical origins, worldwide. Their genotyping at 12 microsatellite loci revealed 575 distinct genotypes organized in subgroups of yeast types, i.e. bread, beer, wine, sake. Some of these groups presented unexpected relatedness: Bread strains displayed a combination of alleles intermediate between beer and wine strains, and strains used for rice wine and sake were most closely related to beer and bread strains. However, up to 28% of genetic diversity between these technological groups was associated with geographical differences which suggests local domestications. Focusing on wine yeasts, a group of Lebanese strains were basal in an F(ST) tree, suggesting a Mesopotamia-based origin of most wine strains. In Europe, migration of wine strains occurred through the Danube Valley, and around the Mediterranean Sea. An approximate Bayesian computation approach suggested a postglacial divergence (most probable period 10,000-12,000 bp). As our results suggest intimate association between man and wine yeast across centuries, we hypothesize that yeast followed man and vine migrations as a commensal member of grapevine flora.  相似文献   

18.
AIMS: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. METHODS AND RESULTS: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. CONCLUSIONS: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.  相似文献   

19.
AIMS: The main objective of this study was to develop polysaccharide-degrading wine strains of Saccharomyces cerevisiae, which are able to improve aspects of wine processing and clarification, as well as colour extraction and stabilization during winemaking. METHODS AND RESULTS: Two yeast expression/secretion gene cassettes were constructed, namely (i) a pectinase gene cassette (pPPK) consisting of the endo-polygalacturonase gene (pelE) from Erwinia chrysanthemi and the pectate lyase gene (peh1) from Erwinia carotovora and (ii) a glucanase/xylanase gene cassette (pEXS) containing the endo-beta-1,4-glucanase gene (end1) from Butyrivibrio fibrisolvens and the endo-beta-1,4-xylanase gene (xynC) from Aspergillus niger. The commercial wine yeast strain, VIN13, was transformed separately with these two gene cassettes and checked for the production of pectinase, glucanase and xylanase activities. Pinot Noir, Cinsaut and Muscat d'Alexandria grape juices were fermented using the VIN13[pPPK] pectinase- and the VIN13[pEXS] glucanase/xylanase-producing transformants. Chemical analyses of the resultant wines indicated that (i) the pectinase-producing strain caused a decrease in the concentration of phenolic compounds in Pinot Noir whereas the glucanase/xylanase-producing strain caused an increase in phenolic compounds presumably because of the degradation of the grape skins; (ii) the glucanase/xylanase-producing strain caused a decrease in wine turbidity, especially in Pinot Noir wine, as well as a clear increase in colour intensity and (iii) in the Muscat d'Alexandria and Cinsaut wines, the differences between the control wines (fermented with the untransformed VIN3 strain) and the wines produced by the two transformed strains were less prominent showing that the effect of these polysaccharide-degrading enzymes is cultivar-dependent. CONCLUSIONS: The recombinant wine yeasts producing pectinase, glucanase and xylanase activities during the fermentation of Pinot Noir, Cinsaut and Muscat d'Alexandria grape juice altered the chemical composition of the resultant wines in a way that such yeasts could potentially be used to improve the clarity, colour intensity and stability and aroma of wine. SIGNIFICANCE AND IMPACT OF THE STUDY: Aspects of commercial-scale wine processing and clarification, colour extraction and stabilization, and aroma enhancement could potentially be improved by the use of polysaccharide-degrading wine yeasts without the addition of expensive commercial enzyme preparations. This offers the potential to further improve the price:quality ratio of wine according to consumer expectations.  相似文献   

20.
Aims: Analysis of the diversity and distribution of wine yeasts isolated from organically and conventionally grown grapes, and during the subsequent fermentation with or without starter cultures in six different commercial wineries. Methods and Results: PCR‐RFLP screening of isolates revealed the involvement of ten different species. Saccharomyces cerevisiae, scarcely isolated from grapes, was the dominant species during the latter phases of fermentation, identifying 108 different genotypes by means of SSR analysis. Species and strains’ diversity and presence were strongly influenced by the farming system used to grow the grapes and the system of vinification. Conclusions: Organic farming management was more beneficial in terms of diversity and abundance than the conventional one. Induced fermentation generated a great replacement of native yeasts. Although winery‐resident yeasts resulted to be predominant in the process, some noncommercial strains originally in the vineyard were found in final stages of the fermentation, confirming that autochthonous strains of S. cerevisiae are capable to conduct the fermentation process up to its end. Significance and Impact of the Study: The study of natural yeast communities from commercial vineyards and wineries is an important step towards the preservation of native genetic resources. Our results have special relevance because it is the first time that the real situation of the yeast ecology of alcoholic fermentation in commercial wineries belonging to the relevant wine‐producing Appellation of Origin ‘Vinos de Madrid’ is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号