首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the exocytosis by Chinese hamster ovary (CHO) cells of a set of fluid-phase pinocytic tracers. The tracers were horseradish peroxidase (HRP), a glycoprotein of approximately 40 kDa, lucifer yellow (LuY), a 457 dalton, membrane-impermeant fluorescent dye, and glucose polymers ranging from sucrose through higher molecular weight, fluorescein isothiocyanate (FITC) dextrans. After a long term uptake (16-20 h), each of these tracers was localized to lysosomes. Exocytosis of the majority of the small molecule tracers, LuY and [14C] sucrose, was observed over a period of a few to several h. There was no significant exocytosis of 42 kDa FITC dextran or HRP during an 18-20 h chase, while lower molecular weight dextrans were exocytosed. After co-accumulation of LuY and HRP in lysosomes, only the low molecular weight marker was exocytosed. These observations suggest retention of endocytized solutes within lysosomes is dependent on molecular size and may be limited by the rate of diffusion of molecules into shuttle vesicles.  相似文献   

2.
We have used endocytic and phagocytic tracers in an EM immunocytochemical study to define the compartments of the phagocytic and endocytic pathways in mouse peritoneal macrophages. Endocytosed BSA-gold appeared successively in early endosomes, spherical endosomal vesicles, a late endosomal tubuloreticular compartment (TC), and terminal lysosomes. The TC appeared as an elaborate structure enriched for the lysosomal membrane glycoproteins Lamp 1 and Lamp 2, and expressing significant levels of rab7, a late endosome-specific GTP-binding protein. The cation-independent mannose-6-phosphate receptor was restricted to specialized regions of the TC that were predominantly adjacent to the Golgi complex. Both the early endosome and the TC had coated bud structures whose composition and function are presently unknown. Phagolysosomes containing latex beads expressed the same membrane antigens and received endocytic tracers simultaneously with the TC. Since the membrane surrounding both organelles was also in direct continuity, we assume that both structures form one functional compartment. Macrosialin, an antigen confined to macrophages and dendritic cells, was heavily expressed in TC and phagolysosomal membranes with low levels being detected in other endosomal compartments and on the cell surface. Treatment of cells with wheat germ agglutinin drastically altered the morphology of the TC, giving rise to sheets of tightly adherent membrane and greatly expanded vesicles, in which cell-associated wheat germ agglutinin was concentrated. The spherical endosomal carrier vesicles loaded with internalized gold tracers clustered nearby, often making contact without fusing. Since the delivery of endocytic tracer to the TC was significantly delayed these experiments suggest that the lectin is somehow preventing the endosome vesicles from fusing with the TC. Collectively, our data argue first that the PLC is equivalent to the "tubular lysosomes" commonly described in macrophages, and second that the meeting of the phagocytic and endocytic pathway occurs in this compartment.  相似文献   

3.
《The Journal of cell biology》1993,121(5):1011-1020
Macropinosomes formed by addition of recombinant macrophage colony- stimulating factor (rM-CSF) to mouse macrophages migrate centripetally and shrink, remaining detectable by phase microscopy for up to 15 min. This longevity allowed us to study how macropinosomes age. Macropinosomes were pulse labeled for 1 min with fixable fluorescein dextran (FDx10f), a probe for fluid phase pinocytosis, and chased for various times. To quantify changes in their antigenic profile, pulse- labeled macropinosomes of different ages were fixed and stained for immunofluorescence with a panel of antibodies specific for the transferrin receptor (TfR), the late endosome-specific, GTP-binding protein rab 7 or lysosomal glycoprotein A (lgp-A), and the percentage of antibody positive, FDx10f-labeled macropinosomes was scored. Some newly formed macropinosomes were positive for TfR, but few were rab 7 or lgp-A-positive. With intermediate chase times (2-4 min), staining for rab 7 and lgp-A increased to > 60%, while TfR staining declined. After a long chase (9-12 min), rab 7 staining returned to low levels while lgp-A staining remained at a high level. Thus, macropinosomes matured by progressive acquisition and loss of characteristic endocytic vesicle markers. However, unlike a maturation process, their merger with the tubular lysosomal compartment more nearly resembled the incorporation of a transient vesicle into a pre-existing, stable compartment. Shortly after their formation, FDx10f-labeled macropinosomes contacted and merged with Texas red dextran (TRDx10)- labeled tubular lysosomes. This occurred in two steps: macropinosomes acquired lgp-A first, and then several minutes later the cation- independent mannose-6-phosphate receptor (CI-MPR) and markers of lysosomal content (cathepsin L or pre-loaded TRDx10), all apparently derived from tubular lysosomes. Thus, macropinosome progress through macrophages showed features of both the maturation and vesicle shuttle models of endocytosis, beginning with a maturation process and ending by merger into a stable, resident lysosomal compartment.  相似文献   

4.
Small GTPase RhoA regulates signal transduction from receptors in the membrane to a variety of cellular events related to cell morphology, motility, cytoskeletal dynamics, cytokinesis, and tumour progression, but it is unclear how RhoA regulates intracellular membrane dynamics of lysosomes. We showed previously by confocal immunofluorescence microscopy that the transfection of dominant active RhoA in MM1 cells causes the dispersal translocation of lysosomes stained for cathepsin D throughout the cytoplasm. Y-27632, a selective inhibitor of p160ROCK, impeded the cellular redistribution of lysosomes and promoted reclustering of lysosomes toward the perinuclear region. Here we have further investigated whether the acidic lysosomal vesicles dispersed throughout the cytoplasm are applied to the early endosomes in the endocytic pathway, and we demonstrate that the dispersed lysosomes were accessible to endocytosed molecule such as dextran, and their acidity was not changed, as determined by increased accumulation of the acidotropic probe LysoTracker Red. Brefeldin A did not induce the tabulation of these dispersed lysosomes, but it caused early endosomes to form an extensive tubular network. The dispersed lysosomes associated with cathepsin D and LIMPII were not colocalized with early endosomes, and these vesicles were not inaccessible to the endocytosed anti-transferrin receptor antibody. Moreover, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, induced a dramatic change in LIMPII-containing structures in which LIMPII-positive swollen large vacuoles were increased and small punctate structures disappeared in the cytoplasm. These swollen vacuoles were not doubly positive for LIMPII and transferrin receptor, and were not inaccessible to the internalized anti-transferrin receptor antibody. Therefore, our novel findings presented in this paper indicate that RhoA activity causes a selective translocation of lysosomes without perturbing the machinery of endocytic pathway.  相似文献   

5.
Horseradish peroxidase (HRP), an enzyme internalized by fluid phase pinocytosis, has been used to study the process by which pinosome contents are delivered to lysosomes in Chinese hamster ovary cells. Pinosome contents were labeled by allowing cells to internalize HRP for 3-5 min. Following various chase times, cells were either processed for HRP and acid phosphatase (AcPase) cytochemistry or homogenized and fractionated in Percoll gradients. In Percoll gradients, pinosomes labeled by a 3-5 min HRP pulse behaved as a vesicle population more dense than plasma membrane and less dense than lysosomes. In pulse- chase experiments, internalized HRP was chased rapidly (3-6 min chase) to a density position intermediate between the "initial" pinocytic vesicle population and lysosomes. With longer chase periods, a progressive accumulation of HRP in more dense vesicles was observed. Correspondence between the HRP distribution and lysosomal marker distribution was reached after a approximately 1-h chase. By electron microscope cytochemistry of intact cells, the predominant class of HRP- positive vesicles after pulse uptakes or a 3-min chase period was characterized by a peripheral rim of reaction product and was AcPase negative. After 10-120-min chase periods, the predominant class of HRP- positive vesicles was characterized by luminal deposits and HRP activity was frequently observed in multivesicular bodies. HRP-positive vesicles after a 10- or 30-min chase were AcPase-positive. No HRP activity was detected in Golgi apparatus. Together these observations indicate that progressive processing of vesicular components of the vacuolar apparatus occurs at both a prelysosomal and lysosomal stage.  相似文献   

6.
The effects of bafilomycin, nocodazole, and reduced temperature on recycling and the lysosomal pathway have been investigated in various cultured cell lines and have been shown to vary dependent on the cell type examined. However, the way in which these treatments affect recycling and transport to lysosomes within the same cell line has not been analyzed. In the current study, we used fluorophore-labeled transferrin and dextran as typical markers for the recycling and the lysosomal pathways, respectively, to explore the morphology and the intravesicular pH of endocytic compartments in HeLa cells. The V-ATPase inhibitor bafilomycin selectively inhibited the transport of marker destined for lysosomal degradation in early endosomes, whereas the transport of transferrin to the perinuclear recycling compartment (PNRC) still occurred. The kinetics of transferrin acidification was found to be biphasic, indicative of fast and slow recycling pathways via early endosomes (pH 6.0) and PNRC (pH 5.6), respectively. Furthermore, the disruption of microtubules by nocodazole blocked the transport of transferrin to the PNRC in early endosomes and of lysosome-directed marker into endosomal carrier vesicles. In contrast, incubation at 20°C affected the lysosomal pathway by causing retention of internalized dextran in late endosomes and a delay in transferrin recycling. Taken together, these data clearly demonstrate, for the first time, that the transferrin recycling pathway and transport of endocytosed material to lysosomes are differentially affected by bafilomycin, nocodazole, and low temperature in HeLa cells. Consequently, these treatments can be applied to investigate whether internalized macromolecules such as viruses follow a recycling or degradative pathway.This work was supported by grants from the Austrian Science Fund P12967 and P17590 to R.F.  相似文献   

7.
Summary A double-labeling protocol was used to study endocytic pathways and lysosomal transfer of exogenous macromolecules in cultured mouse peritoneal macrophages. After pulse-chase labeling of lysosomes with horseradish peroxidase (visualized cytochemically), the cells were exposed to native, anionic ferritin for 0–45 min at 37° C and then analysed by transmission electron microscopy. The results show that ferritin binds to the plasma membrane, accumulates in coated pits, and is rapidly taken up in small, smooth-surfaced endocytic vesicles. The latter carry the ferritin molecules directly to lysosomes, recognized by their peroxidase labeling, or fuse with each other to form larger endocytic vacuoles (endosomes) which in turn fuse with and empty their content into lysosomes. The first signs of transfer of ferritin into the lysosomes were seen after 5–10 min of exposure and after 25–30 min most of the lysosomes were labeled. Union of ferritin-labeled and other lysosomes was also noted, suggesting that the contents of the lysosomes were spread within the lysosomal compartment by fusion-fission processes. It is concluded that a multiplicity of structures is involved in the uptake and intracellular transport of exogenous macromolecules in macrophages and that the time sequence of lysosomal transfer of the interiorized material is highly variable.  相似文献   

8.
9.
The Niemann-Pick C1 (NPC1) protein and endocytosed low density lipoprotein (LDL)-derived cholesterol were shown to enrich separate subsets of vesicles containing lysosomal associated membrane protein 2. Localization of Rab7 in the NPC1-containing vesicles and enrichment of lysosomal hydrolases in the cholesterol-containing vesicles confirmed that these organelles were late endosomes and lysosomes, respectively. Lysobisphosphatidic acid, a lipid marker of the late endosomal pathway, was found in the cholesterol-enriched lysosomes. Recruitment of NPC1 to Rab7 compartments was stimulated by cellular uptake of cholesterol. The NPC1 compartment was shown to be enriched in glycolipids, and internalization of GalNAcbeta1-4[NeuAcalpha2-3]Galbeta1-4Glcbeta1-1'-ceramide (G(M2)) into endocytic vesicles depends on the presence of NPC1 protein. The glycolipid profiles of the NPC1 compartment could be modulated by LDL uptake and accumulation of lysosomal cholesterol. Expression in cells of biologically active NPC1 protein fused to green fluorescent protein revealed rapidly moving and flexible tubular extensions emanating from the NPC1-containing vesicles. We conclude that the NPC1 compartment is a dynamic, sterol-modulated sorting organelle involved in the trafficking of plasma membrane-derived glycolipids as well as plasma membrane and endocytosed LDL cholesterol.  相似文献   

10.
We have shown recently that isoproterenol affects both the cellular location and the morphology of late endosomes in a pH-dependent manner [Marjom?ki et al., Eur. J. Cell Biol. 65, 1-13 (1994)]. In this study, using fluorescence and quantitative electron microscopy, we wanted to examine further what is the fate of internalized markers during their translocation from early to late endosomes under isoproterenol treatment. Fluorescein dextran internalized for 30 min (10-min pulse followed by a 20-min chase) showed accumulation in the cellular periphery during isoproterenol treatment in contrast to the control cells, which accumulated dextran in the perinuclear region. Quantitative electron microscopy showed that the markers accumulated in the early endosomes and putative carrier vesicles. In addition, different particulate markers that were internalized sequentially accumulated in similar structures due to the isoproterenol treatment, altogether suggesting that isoproterenol retards the translocation of markers to the later structures. Prelabelling of the late endosomes with fluorescent dextran or BSA-coated gold particles showed that isoproterenol causes a reduction of the mean size of the prelabelled late endosomes as well as a shift of these vesicles to the cellular periphery. Isoproterenol had no apparent effect on the morphology nor on the location of lysosomes. Percoll fractionation showed that the changes in late endosomal location and morphology did not change their characteristic density. Furthermore, electron microscopy showed that, in the cellular periphery, these late endosomal elements did not fuse with early endosomal structures, which is in agreement with the results of biochemical in vitro cell-free assays carried out by others. In conclusion, the results show that isoproterenol inhibits transport from early to late endosomes in a manner that may be pH- and/or Ca(2+)-dependent. Simultaneously, isoproterenol causes fragmentation of the late endosomal compartment and the shift of these fragments to the cellular periphery, where they have a restricted ability to fuse with earlier endosomal structures.  相似文献   

11.
The mannose 6-phosphate receptor and the biogenesis of lysosomes   总被引:122,自引:0,他引:122  
Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes.  相似文献   

12.
Lysosomes are acidic intracellular compartments and are regarded as degradative and the end point, of the endocytic pathway. Here we provide evidence for the generation of acid hydrolase poor and non-acidic post-lysosomal compartments in NRK cells that have accumulated non-digestible macromolecules, Texas red-dextran (TR-Dex), within lysosomes. When TR-Dex was fed to the cells for 6h, most of the internalized TR-Dex colocalized with a lysosomal enzyme, cathepsin D. With an increase in the chase period, however, the internalized TR-Dex gradually accumulated in cathepsin D-negative vesicles. These vesicles were positive for a lysosomal membrane protein, LGP85, and their formation was inhibited by treatment of the cells with U18666A, which impairs membrane transport out of late endosomal/lysosomal compartments, thereby suggesting that the vesicles are derived from lysosomes. Interestingly, these compartments are non-acidic as judged for the DAMP staining. The results, therefore, suggest that the excess accumulation of non-digestible macromolecules within lysosomes induces the formation of acid hydrolase poor and non-acidic post-lysosomal compartments. The fact that treatment of the cells with lysosomotropic amines or a microtubule-depolymerization agent resulted in extensive colocalization of TR-Dex with cathepsin D further indicates that the formation of the post-lysosomal compartments depends on the lysosomal acidification and microtubule organization. Furthermore, these results suggest bi-directional membrane transport between lysosomes and the post-lysosomal compartments, which implies that the latter are not resting compartments.  相似文献   

13.
Sandhoff disease (SD) is a lysosomal storage disorder due to mutations in the gene encoding for the β-subunit of β-hexosaminidase, that result in β-hexosaminidase A (αβ) and β-hexosaminidase B (ββ) deficiency. This leads to the storage of GM2 ganglioside in endosomes and lysosomes, which ends in a progressive neurodegeneration. Currently, very little is known about the biochemical pathways leading from GM2 ganglioside accumulation to pathogenesis. Defects in transport and sorting by the endosomal–lysosomal system have been described for several lysosomal storage disorders. Here, we have investigated the endosomal–lysosomal compartment in fibroblasts from SD patients and observed that both late endosomes and lysosomes, but not early endosomes, have a higher density in comparison with normal fibroblasts. Moreover, Sandhoff fibroblasts have an intracellular distribution of terminal endocytic organelles that differs from the characteristic perinuclear punctate pattern observed in normal fibroblasts and endocytic vesicles also appear larger. These findings reveal the occurrence of an alteration in the terminal endocytic organelles of Sandhoff fibroblasts, suggesting an involvement of this compartment in the disruption of cell metabolic and signalling pathways and in the onset of the pathological state.  相似文献   

14.
《The Journal of cell biology》1989,109(4):1445-1456
A mutant strain of Dictyostelium discoideum, HMW570, oversecretes several lysosomal enzyme activities during growth. Using a radiolabel pulse-chase protocol, we followed the synthesis and secretion of two of these enzymes, alpha-mannosidase and beta-glucosidase. A few hours into the chase period, HMW570 had secreted 95% of its radiolabeled alpha- mannosidase and 86% of its radiolabeled beta-glucosidase as precursor polypeptides compared to the secretion of less than 10% of these forms from wild-type cells. Neither alpha-mannosidase nor beta-glucosidase in HMW570 were ever found in the lysosomal fractions of sucrose gradients consistent with HMW570 being defective in lysosomal enzyme targeting. Also, both alpha-mannosidase and beta-glucosidase precursors in the mutant strain were membrane associated as previously observed for wild- type precursors, indicating membrane association is not sufficient for lysosomal enzyme targeting. Hypersecretion of the alpha-mannosidase precursor by HMW570 was not accompanied by major alterations in N- linked oligosaccharides such as size, charge, and ratio of sulfate and phosphate esters. However, HMW570 was defective in endocytosis. A fluid phase marker, [3H]dextran, accumulated in the mutant at one-half of the rate of wild-type cells and to only one-half the normal concentration. Fractionation of cellular organelles on self-forming Percoll gradients revealed that the majority of the fluid-phase marker resided in compartments in mutant cells with a density characteristic of endosomes. In contrast, in wild-type cells [3H]dextran was predominantly located in vesicles with a density identical to secondary lysosomes. Furthermore, the residual lysosomal enzyme activity in the mutant accumulated in endosomal-like vesicles. Thus, the mutation in HMW570 may be in a gene required for both the generation of dense secondary lysosomes and the sorting of lysosomal hydrolases.  相似文献   

15.
The location of lipopolysaccharide (LPS) was studied by immunofluorescence and immunoelectron microscopy in macrophages infected with a non-invasive Shigella dysenteriae 1 strain. Bacterial degradation began only 3 h after the end of infection. The first visible sign of degradation was detected by immunogold labelling at the level of LPS which detached from the bacterial surface and was transferred to the perinuclear lysosomes. After a few hours, it was found in small vesicles spread over the whole macrophage cytoplasm in which it remained visible for 72 h. These vesicles seemed to belong to a compartment in which slowly or non-degradable compounds are stored. LPS separation from the bacterial surface was immediately followed by the degradation of the intrabacterial constituents. The long lag period observed before initiation of bacterial degradation was not due to a lack of phagosome acidification, since DAMP, a lysosomotropic drug was found in all phagosomes at the end of the ingestion period. The frequency of phagosome-lysosome fusion was 30% for S dysenteriae and 72% for B subtilis used as a reference of high fusion frequency. The low frequency of fusion of S dysenteriae may play an important role in the survival of the virulent strains in macrophage by providing bacteria enough time to lyse the phagosome membrane before lysosome fusion occurs.  相似文献   

16.
It was previously shown that cultured mouse peritoneal macrophages ingest anionic derivatives of horseradish peroxidase (HRP) and ferritin by fluid-phase endocytosis and accumulate them in lysosomes. Cationic derivatives were taken up by adsorptive endocytosis and transported to lysosomes but subsequently appeared also in stacked cisternae, tubules, and vesicles of the Golgi complex. In the present investigation, the effect of molecular net charge on the rate of cellular inactivation of a protein was studied. The results demonstrate that anionized HRP was inactivated at a higher initial rate than cationized HRP. This is in agreement with the finding that the cationic protein partly escaped from the digestive compartment of the cells, that means the lysosomes. The effects of phorbol myristate acetate (PMA)--a diterpene ester and a tumor promoter--and monensin--a carboxylic ionophore and a perturbant of the Golgi complex--on fluid-phase endocytosis of HRP and intracellular transport of cationized ferritin (CF) were also studied. PMA stimulated fluid-phase endocytosis of HRP but did not interfere with transport of CF to the Golgi complex. Contrarily, monensin inhibited uptake of HRP and almost totally blocked transport of CF to the Golgi complex. The findings support the idea that membrane and content of endocytic vesicles are treated separately. The content is emptied into lysosomes where macromolecular material normally is degraded. The membrane becomes part of the lysosomal envelope in connection with endocytic vesicle-lysosome fusion. Subsequently, membrane patches are detached from the lysosomes and reutilized. This is at least partly mediated via the Golgi complex and particularly its tubular and vesicular parts. Since the cationic tracers do not bind to the membrane in a stable way, it is not possible to extend the conclusions to individual membrane constituents.  相似文献   

17.
Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.  相似文献   

18.
Francisella tularensis is a highly virulent facultative intracellular pathogen that has been categorized as a class A bioterrorism agent, and is classified into four subsp, tularensis, holarctica, mediasiatica and novicida. Although the ability of F. tularensis subsp. novicida to cause tularemia in mice is similar to the virulent subsp. tularensis and holarctica, it is attenuated in humans. It is not known whether attenuation of F. tularensis subsp. novicida in humans is resulting from a different route of trafficking within human macrophages, compared with the tularensis or holarctica subsp. Here we show that in quiescent human monocytes-derived macrophages (hMDMs), the F. tularensis subsp. novicida containing phagosome (FCP) matures into a late endosome-like stage that acquires the late endosomal marker LAMP-2 but does not fuse to lysosomes. This modulation of phagosome biogenesis by F. tularensis is followed by disruption of the phagosome at 4-12 h and subsequent bacterial escape into cytoplasm where the organism replicates. In IFN-gamma-activated hMDMs, intracellular replication of F. tularensis is completely inhibited, and is associated with failure of the organism to escape from the phagosome into the cytoplasm for up to 24 h after infection. In IFN-gamma-activated hMDMs, the FCPs acquire the lysosomal enzymes Cathepsin D, which is excluded in quiescent hMDMs. When the lysosomes of IFN-gamma-activated hMDMs are preload with Texas Red Ovalbumin or BSA-gold, the FCPs acquire both lysosomal tracers. In contrast, both lysosomal tracers are excluded from the FCPs within quiescent hMDMs. We conclude that although F. tularensis subsp. novicida is attenuated in humans, it modulates biogenesis of its phagosome into a late endosome-like compartment followed by bacterial escape into the cytoplasm within quiescent hMDMs, similar to the virulent subsp. tularensis. In IFN-gamma-activated hMDMs, the organism fails to escape into the cytoplasm and its phagosome fuses to lysosomes, similar to inert particles.  相似文献   

19.
Reduction in surface beta(1)-adrenoceptor (beta1AR) density is thought to play a critical role in mediating the therapeutic long term effects of antidepressants. Since antidepressants are neither agonists nor antagonists for G protein-coupled receptors, receptor density must be regulated through processes independent of direct receptor activation. Endocytosis and recycling of the beta1AR fused to green fluorescent protein at its carboxyl-terminus (beta1AR-GFP) were analyzed by confocal fluorescence microscopy of live cells and complementary ligand binding studies. In stably transfected C6 glioblastoma cells, beta1AR-GFP displayed identical ligand-binding isotherms and adenylyl cyclase activation as native beta1AR. Upon exposure to isoproterenol, a fraction of beta1AR-GFP (10-15%) internalized rapidly and colocalized with endocytosed transferrin receptors in an early endosomal compartment in the perinuclear region. Chronic treatment with the tricyclic antidepressant desipramine (DMI) did not affect internalization characteristics of beta1AR-GFP when challenged with isoproterenol. However, internalized receptors were not able to recycle back to the cell surface in DMI-treated cells, whereas recycling of transferrin receptors was not affected. Endocytosed receptors were absent from structures that stained with fluorescently labeled dextran, and inhibition of lysosomal protease activity did not restore receptor recycling, indicating that beta1AR-GFP did not immediately enter the lysosomal compartment. The data suggest a new mode of drug action causing a "switch" of receptor fate from a fast recycling pathway to a slowly exchanging perinuclear compartment. Antidepressant-induced reduction of receptor surface expression may thus be caused by modulation of receptor trafficking routes.  相似文献   

20.
The distribution of the cation-independent mannose 6-phosphate and 78 kDa receptors was studied in postnuclear subcellular fractions from two rat liver cell lines. ELISA assays revealed that the mannose 6-phosphate receptor is enriched in the light buoyant Percoll fractions that contain Golgi structures and early endosomes. Most of the 78 kDa receptor is localized in a heavy fraction at the bottom of the Percoll gradient and smaller amounts in the endosomal fractions. The high-density compartment is denser than lysosomes, contains LAMP2 but not LIMPII or acid hydrolases, and is not disrupted with glycyl-l-phenylalanine 2-naphthylamide, a substrate for cathepsin C that selectively disrupts lysosomes. Immunofluorescence microscopy studies indicate no colocalization of the 78 kDa receptor with the mannose 6-phosphate receptor or LIMPII. Mannose 6-phosphate-independent endocytosed beta-glucuronidase was found in the lysosomal, the early and late endosomal fractions. These fractions were immunoadsorbed in columns containing antibodies against the 78 kDa receptor. Only the endocytosed beta-glucuronidase present in the early and late endosomal fractions is associated to immunoadsorbed vesicles. In these vesicles, LAMP2 was detected but no LIMPII or the mannose 6-phosphate receptor. Results obtained suggest that the 78 kDa receptor is found along the endocytic pathway, but in vesicles different from the cation-independent mannose 6-phosphate receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号