首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Synopsis The littoral environment and fish fauna of Swartvlei, an estuarine lake, was monitored for four years during which major habitat changes occurred. Initially (1979) the zone was dominated by the submerged macrophytes Potamogeton pectinatus, Chara globularis and Lamprothamnium papulosum. This plant community was replaced by filamentous algal mats during 1980 and with the disappearance of these mats in 1981 the littoral zone was transformed into a sandy habitat. There was a highly significant decline in the numbers of fishes in the littoral zone between the macrophyte and sand phases but no significant decrease in fish biomass between the two phases. Analysis of gill net catches revealed an increase in the CPUE of the family Mugilidae between the macrophyte and sand phases but a decline in the CPUE of vegetation associated species such as Monodactylus falciformis and Rhabdosargus holubi over the same period. The increase in mullet stocks during the sand phase was attributed to epipsammic micro-algal production and the input of allochthonous detritus during the 1981 floods. The three fish species diversity indices used in this study showed minor fluctuations between the habitat phases and these variations were related to changes in the equitability of distribution between the individual species within each habitat type. The numbers of fish species recorded during the macrophyte, algal mat and sand phases varied by less than 20%. The resilience of estuarine fishes to major alterations in their environment was illustrated by the fact that all fish species recorded at the beginning of 1979 were present at the end of 1982, despite major habitat and food resource changes.  相似文献   

2.
Variation in substrate association types and maximum size of aquatic insects were studied in a vegetated littoral zone of three lake basins. The basins differed from each other in trophic status, biomass of benthivorous fish, and abundance of macrophytes. Four types of substrate association – swimmers, crawlers, semisessiles and burrowers, respectively – were assumed to represent decreasing vulnerability to fish predators. Large-sized species were also hypothesised to be more vulnerable to fish predators. The distributions of species traits were examined in relation to vegetation density. Inferring from ``predation hypothesis' opposite selection pressures on the species traits were expected along the vegetation density. Dense macrophyte beds were thought to be dominated by invertebrate predators and open water by fish predators, since the predation efficiency of fish decreases in complex environments. In the case of invertebrate predator domination, large size and higher activity should be favoured traits among the prey species. Distribution patterns of modes of the two studied traits were explored separately for predatory and non-predatory insects. As expected, swimmers and large-sized crawlers were characteristic of the insect assemblages of dense macrophyte beds. The densities of Odonata, Corixidae, Dytiscidae, Ephemeroptera and Sialidae were higher among macrophytes than in open water, where these insect taxa were possibly depleted by fish. On the other hand, the small-sized and fairly immobile Chironomidae were the most abundant group in open water. These results support the existence of a predator transition zone among littoral vegetation, ranging from domination of invertebrate predation among the dense beds to that of fish predation in open water.  相似文献   

3.
Temporal changes of biomass and dominant species in benthic algal communities were investigated in a littoral sand-beach zone in the north basin of Lake Biwa from December 1999 to September 2000. Chlorophyll-a amounts of benthic algal communities per unit area of the sandy sediments rapidly increased from late April to June. Increases in biomass of the benthic algal communities are considered to result from the propagation of filamentous green algae Oedogonium sp. and Spirogyra sp. The cell numbers of filamentous green algae and chlorophyll-a amounts of benthic algal communities at depths of 30 and 50cm at a station protected by a breakwater in May were significantly higher than those of a station exposed directly to wave activity. Thus, the biomass accumulation of the benthic algal communities seems to be regulated strongly by wave disturbance. The development of filamentous green algae may contribute to the increase in biomass of the benthic algal community and to the changes in seasonal patterns of biomass in the sand-beach zone of Lake Biwa. We consider that the development of the filamentous green algal community in the littoral zone of Lake Biwa is the result of eutrophication.  相似文献   

4.
Model experiments on a possibility that pathogenic enterobacteria Salmonella enteritidis (Gartneri) can grow on decaying algal mats with prevalence of the filamentous algae Cladophora glomerata (L.) Kütz were carried out. Samples of algal mats have been collected in the eastern part of the Gulf of Finland in the Baltic Sea. A bacterial culture of Salmonella enteritidis was placed into tubes containing samples of mats. The intensive growth of salmonella was noted in alga samples collected in the freshwater zone (salinity 0.2–1.5‰); growth was practically absent in the samples of algae collected in a zone with salinity 2–3‰, while salmonella remained viable in the control tubes with water without algae. The growth of coliform enterobacteria initially inhabited in the algal mats was discovered in all experiments. Studies carried out in 2009 show that the thickness of the algal mats in the costal zones of the Gulf of Finland reached 20 cm and their biomass reached a few tons per 1 km2. These experiments showed that dead algal mats stimulate the growth of enterobacteria in the littoral zone of the Baltic Sea, especially in the freshwater part, and can promote the development of these pathogenic microorganisms.  相似文献   

5.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

6.
The littoral and demersal ichthyofaunal community structure in the freshwater-deprived, permanently open Kariega Estuary was investigated following heavy rain in November 2006 and was compared to low-flow condition data from 1991 and 1996. All surveys took place during the spring months and allowed for a comparison of a wet and a dry spring period. The 2006 freshwater pulse generated a strong horizontal salinity gradient within the estuary. In the absence of freshwater inflow, the ichthyofaunal community in the littoral zone was numerically dominated by estuarine resident species, whilst after the freshwater pulse an increased contribution of marine migrant species was observed. Within the demersal zone, marine straggler species dominated during the dry spring period and estuarine residents during the wet spring period. Numerical analyses of the littoral and demersal fish assemblages indicated the presence of three distinct groupings — corresponding to the upper and middle reaches during separate wet and dry periods, and a community associated with the lower reaches of the estuary. It is suggested that the shift in community structure between the dry and wet spring periods could be related to altered physico-chemical and trophic conditions within the estuary, as well as the increased presence of freshwater and estuarine olfactory cues within the coastal zone, which would have resulted in the recruitment of 0+ estuary-associated marine species into the Kariega system.  相似文献   

7.
1. The effect of macrophytes on the spatial distribution of littoral rotifers was examined in Lake Rotomanuka, New Zealand (37°55'S, 175°19'E). Total rotifer abundances and those of abundant species, were compared between three macrophyte species, Myriophyllum propinquum , Eleocharis sphacelata and Egeria densa , and spatially across a littoral transect in relation to these species.
2. The abundances of many species, for example Euchlanis dilatata, Lecane closterocerca and L. lunaris, differed significantly between macrophyte species. More planktonic forms, Ascomorpha saltans , Keratella cochlearis and Synchaeta oblonga, however, showed no significant preference for macrophyte species.
3. Differences in rotifer abundances were evident even when different species of macrophyte grew in close proximity to one another, indicating that variations in physical and chemical conditions, which occur in the littoral of Lake Rotomanuka, could be largely discounted for much of the variation between macrophyte species.
4. Variation in rotifers between macrophytes was probably the result of a number of factors, including differences in macrophyte morphology, macrophyte age, epiphytic algal growths and the differential effects of predation by invertebrates and fish between macrophytes.
5. Variability of rotifer abundances spatially across the ecotone was less marked than between macrophyte species. The species of macrophyte occurring, and therefore the community composition and distribution of macrophyte species in the littoral, appears to be a major influence in the spatial structuring of rotifer communities in the littoral region of lakes.  相似文献   

8.
Archosargus probatocephalusin a Florida estuary was investigated to explore intraspecific variation in prey utilization and jaw biomechanics. Volumetric contribution of major prey types and seven biomechanical features of the oral jaws that characterize prey-capture and processing performance were contrasted between two locations within the estuary. At Mosquito Lagoon, where A. probatocephalusinhabited mostly oyster beds, mangroves and salt marshes, fish consumed mostly thick-shelled bivalves, gastropods, crabs, and tubiculous polychaetes and amphipods. In contrast, conspecifics at Indian River Lagoon that inhabited mostly seagrass beds and algal turf consumed predominantly algae, seagrass, epiphytic invertebrates and small bivalves and gastropods. Difference in magnitude of durophagy between locations was associated with differences in oral-jaw biomechanics. Analyses of covariance indicated that A. probatocephalusat Mosquito Lagoon had more massive jaw muscles and bones, than conspecifics at Indian River Lagoon. Variations in lever ratios for jaw-opening and jaw-closing between locations were not significant. It is hypothesized that intralocality differences in food habits have induced the development of feeding morphologies that enhance the ability of A. probatocephalusto successfully exploit locally dominant prey resources within the estuary. Plasticity of the feeding mechanism of A. probatocephalusmay buffer the species from the adverse effects of settling on heterogeneous habitats that contain variable prey resources such as those found within estuaries.  相似文献   

9.
The decay of submerged macrophytes in lakes of high trophic level drastically limits the extent of habitat available to littoral invertebrates. The loss can be partially compensated by growth of filamentous algae. Our results show that macroinvertebrates typically associated with submerged macrophytes as well as planktonic crustaceans and rotifers occurred within algal mats at high densities.Aggregations of filamentous algae are usually short-term, with frequent appearances and disappearances. The rate of colonization of algal mats by invertebrates is rapid. In locations with a high degree of water exchange, animals colonize both living and decomposing algal mats at a similar rate, but in sheltered habitats, decomposing filamentous algae are colonized by a smaller number of animals.Comparison was made between the occurrence of invertebrate macrofauna on Chara spp., Potamogeton perfoliatus, P. lucens and Myriophyllum spicatum in several lakes. Although these macrophytes differ visibly in morphology and phenology, the number and composition of macroinvertebrates during summer was associated more closely with trophic state of a lake than with plant species.  相似文献   

10.
1. High biomass of macrophytes is considered important in the maintenance of a clear‐water state in shallow eutrophic lakes. Therefore, rehabilitation and protection of aquatic vegetation is crucial to the management of shallow lakes. 2. We conducted field mesocosm experiments in 1998 and 1999 to study community responses in the plant‐dominated littoral zone of a lake to nutrient enrichment at different fish densities. We aimed to find the threshold fish biomass for the different nutrient enrichment levels below which large herbivorous zooplankton escapes control by fish. The experiments took place in the littoral of Lake Vesijärvi in southern Finland and were part of a series of parallel studies carried out jointly at six sites across Europe. 3. In 1998, when macrophyte growth was poor, a clear‐water state with low phytoplankton biomass occurred only in unenriched mesocosms without fish or with low fish biomass (4 g fresh mass m?2). Both nutrient enrichment and high fish biomass (20 g fresh mass m?2) provoked a turbid water state with high planktonic and periphytic algal biomass. The zooplankton community was dominated by rotifers and failed to control the biomass of algae in nutrient enriched mesocosms. The littoral community thus had low buffer capacity against nutrient enrichment. 4. In 1999, macrophytes, especially free‐floating Lemna trisulca L., grew well and the zooplankton community was dominated by filter‐feeding cladocerans. The buffer capacity of the littoral community against nutrient enrichment was high; a clear‐water state with low phytoplankton biomass prevailed even under the highest nutrient enrichment. High grazing rates by cladocerans, together with reduced light penetration into the water caused by L. trisulca, were apparently the main mechanisms behind the low algal biomass. 5. Effects of fish manipulations were less pronounced than effects of nutrient enrichment. In 1999, clearance rates of cladocerans were similar in fish‐free and low‐fish treatments but decreased in the high‐fish treatment. This suggests that the threshold fish biomass was between the low‐ and high‐fish treatments. In 1998, such a threshold was found only between fish‐free and low‐fish treatments. 6. The pronounced difference in the observed responses to nutrient enrichment and fish additions in two successive years suggests that under similar nutrient conditions and fish feeding pressure either clear or turbid water may result depending on the initial community structure and on weather.  相似文献   

11.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

12.
Jan Igor Rybak 《Hydrobiologia》1996,337(1-3):183-186
Laboratory experiments showed that both cladocerans and copepods are able to overcome a filamentous algae barrier, and are able to move within algal mats. This suggests that the crustaceans noted in large numbers in accumulations of algae actively colonize these mats and live inside of them.  相似文献   

13.

The research on the spatial distribution of rotifers between the central and border part of the Myriophyllum bed (M. verticillatum) was carried out between 1998 and 1999 in the shallow part (approx. 1 m depth) of Budzyńskie Lake (Wielkopolski National Park, Poland). The comparison of both species composition and the numbers of individuals between both of the examined zones have not revealed statistically significant differences. However, a higher number of rotifer species and their higher densities, as well as increased participation of littoral species were observed in the middle of the vegetation bed. The structure of the dominating species also differed between both areas. Seven rotifer species were found to have significantly greater numbers in the central part of the Myriophyllum bed, while only one species was significantly correlated with the border part of the macrophyte stand. These differences in the behaviour of particular groups of rotifers may be dependent on the structure of their microhabitat and their position in relation to the open water zone. They may also be related to young fish predation in both habitats and better refuge conditions inside the thick macrophyte stand, as well as typical adaptation to littoral or limnetic life.

  相似文献   

14.
In the Baltic Sea, increased populations of the three-spined stickleback are invading the coastal zone in summer, following declines in large predatory fish such as cod, pike, and perch. Here, we explore the consequences of such a meso-predator release on a near-natural scale, by manipulating stickleback densities in four large 600 m2 enclosures: two ‘removal’ and two ‘addition’ enclosures. Higher densities of stickleback resulted in a three times higher recruitment of ephemeral green macroalgae. At the same time we found higher abundances of the dominating invertebrate grazers with lower stickleback densities: higher numbers of both amphipods and smaller gastropods were found in one stickleback ‘removal’ enclosure and higher numbers of large gastropods occurred in the other ‘removal’ enclosure. Grazer abundances also depended on the macrophyte species that dominated the enclosures. Nutrient enrichment had no statistically significant effect on algal recruitment, although the mean number of algal recruits was almost doubled under enriched conditions. Our results indicate that a meso-predator release of stickleback may dramatically shift coastal food web constitution towards increased abundances of ephemeral macroalgae through a trophic cascade.  相似文献   

15.
Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary’s shorebirds, fish and epibenthic crustaceans. Received: 14 December 1998 / Received in revised form: 26 May 1999 / Accepted: 28 May 1999  相似文献   

16.
Grazing effects of ayu, Plecoglossus altivelis Temminck et Schegel, on the benthic algal assemblages were investigated in the Chikuma River, Japan. Comparison of the algal composition on boulders with and without intensively grazed patches indicated that fish grazing decreased the abundance of diatoms and prostrate filamentous cyanobacteria and caused upright filamentous cyanobacteria to predominate. Differential consumption by ayu was estimated by comparing the relative abundance of algae in the stomach contents of ayu and that in the algal assemblages within the grazed patches. The results showed that ayu consumed the prostrate filamentous cyanobacteria proportionally to their abundance, whereas they ingested diatoms and the upright filamentous cyanobacteria in a larger and lower quantity, respectively, than that expected from their abundance. Differential consumption would involve the change in the algal composition toward the predominance of upright filamentous cyanobacteria under fish grazing conditions.  相似文献   

17.
We analysed the spatio-temporal distribution of zooplankton along a profile of 10 stations from the shore to the pelagic zone from April to September 1988, the period when the larvae and juveniles Rutilus rutilus, the most abundant species in the Lake, are in the littoral zone. The digestive tracts of the young roach were analysed. They fed essentially on rotifers and on cladocerans. For comparison, zooplankton was also analysed at one littoral area without fish fry. There was an increase of cladoceran density from the vegetated nearshore zone to the offshore zone. Considering the density of Bosmina longirostris, Daphnia longispina, Chydorus sphaericus and Ceriodaphnia quadrangula, we observed a different distribution pattern in the course of the year. In the nearshore zone, the relative abundance of small species, Bosmina and Chydorus, was much higher than that of the larger Daphnia. From April to September, predation pressure mainly affected the smallest species: in contrast to the inshore station without fish fry, the density of Bosmina decreased in May in the littoral with fish. Chydorus was concentrated in the littoral between February and April, then grew into the pelagic zone, where predation pressure obviously was low during the warm season. The number of Daphnia, which was eaten by the fish fry at any time, remained low in the nearshore zone, which suggests that the presence of fish may cause Daphnia to avoid this zone. Ceriodaphnia which was not affected by this predation, was scarce in the nearshore zone during mid-summer. The low density of the cladocerans in the nearshore zone is likely associated with vertebrate predation by roach fry and juveniles, the result of such a process being either a depletion in density of the prey, or an avoidance behaviour.  相似文献   

18.
A summary is presented of estimates of distribution and growth of filamentous algae and its effect on the structure and functioning of epibenthic fauna and fish communities in shallow bays on the Swedish west coast. As a consequence of coastal eutrophication vegetation cover has gradually increased during the last decade, and during 1990's most bays in the Skagerrak-Kattegat area were variously covered with filamentous algae during spring and summer (May–July). In some areas filamentous algae (mainlyCladophora andEnteromorpha) completely covered the bottom. In field studies it was demonstrated that increased cover and dominance of filamentous algae result in structural changes of the epibenthic fauna community. Field studies showed that species richness and biomass of epibenthic fauna increased in a sandy bay with a moderate increase (30 to 50%) of filamentous algae cover. At higher cover (90%), biomass of epibenthic fauna was reduced, however, to the same level as for the sandy habitat, although the dominant epibenthic species were different. Heavy growth of epiphytic filamentous algae on eelgrass resulted in reduced biomass and a shift in the species composition of the epibenthic fauna community. Fish assemblage structure was also related to changes in vegetation. In eelgrass beds, fish species numbers were reduced with increasing cover of epiphytic filamentous algae, and at rocky bottoms with kelp algae (dominated byFucus), fish biomass decreased with increasing cover of attached filamentous algae. Further, foraging efficiency of juvenile cod and settling success of plaice were reduced as a response to increasing dominance of filamentous algae.  相似文献   

19.
The biological oxygen demand (BOD) of filtered water from Lake Wingra, Wisconsin is significantly higher in the littoral zone than in the pelagial zone. Laboratory experiments indicate that BOD is not influenced by water temperature at the time of sampling or by enrichment with nitrate or ammonia. Rather, enrichment with macrophyte leachate sharply increases BOD, and enrichment with phosphate produces a small but significant increase in BOD. We conclude that high BOD in littoral waters of the lake is an indication of production of labile organic matter in the water by dense beds of the macrophyte Myriophyllum spicatum.  相似文献   

20.
Cottenie  Karl  Nuytten  Nele  Michels  Erik  De Meester  Luc 《Hydrobiologia》2001,442(1-3):339-350
We studied the zooplankton community structure in a set of 33 interconnected shallow ponds that are restricted to a relatively small area (`De Maten', Genk, Belgium, 200 ha). As the ponds share the same water source, geology and history, and as the ponds are interconnected (reducing chance effects of dispersal with colonisation), differences in zooplankton community structure can be attributed to local biotic and abiotic interactions. We studied zooplankton community, biotic (phytoplankton, macrophyte cover, fish densities, macroinvertebrate densities), abiotic (turbidity, nutrient concentrations, pH, conductivity, iron concentration) and morphometric (depth, area, perimeter) characteristics of the different ponds. Our results indicate that the ponds differ substantially in their zooplankton community structure, and that these differences are strongly related to differences in trophic structure and biotic interactions, in concordance with the theory of alternative equilibria. Ponds in the clear-water state are characterised by large Daphnia species and species associated with the littoral zone, low chlorophyll-a concentrations, low fish densities and high macroinvertebrate densities. Ponds in the turbid-water state are characterised by high abundances of rotifers, cyclopoid copepods and the opposite environmental conditions. Some ponds show an intermediate pattern, with a dominance of small Daphnia species. Our results show that interconnected ponds may differ strongly in zooplankton community composition, and that these differences are related to differences in predation intensity (top-down) and habitat diversity (macrophyte cover).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号