首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A number of recent papers have suggested that gene family content can be used to resolve phylogenies, particularly in the case of prokaryotes, in which extensive horizontal gene transfer means that individual gene phylogenies may not mirror the organismal phylogeny. However, no study has yet examined how sensitive such analyses are to the criterion of homology assessment used to assemble multigene families. Using data from 99 completely sequenced prokaryotic genomes, we examined the effect of homology criteria in phylogenetic analyses wherein presence or absence of each family in the genome was used as a cladistic character. Different criteria resulted in evidence for contradictory tree topologies, sometimes with high bootstrap support. A moderately strict criterion seemed best for assembling multigene families in a biologically meaningful way, but it was not necessarily preferable for phylogenetic analysis. Instead, a very strict criterion, which broke up gene families into smaller subfamilies, seemed to have advantages for phylogenetic purposes. The poor performance of gene family content-based phylogenetic analysis in the case of prokaryotes appears to reflect high levels of homoplasy resulting not only from horizontal gene transfer but also, more importantly, from extensive parallel loss of gene families in certain bacteria genomes.  相似文献   

3.
4.
5.
6.
Insect protein, used for in vitro culture media for entomopathogenic nematode, produces nematodes of high quality. However, the time-consuming culture and poor purity of nematodes hinder the commercial application of insect protein media. We show that hydrolyzed insect protein improves nematode purity in in vitro culture. The results revealed that nematode purity was increased by more than 90 %, and the culture period was reduced by 6 days. Estimated economic efficiency of using hydrolyzed insect protein medium was increased by 44.25 % over that obtained with non-hydrolyzed insect medium.  相似文献   

7.
The purity criteria of bovine rod outer segments (ROS) purified by different procedures were evaluated. Bovine ROS were purified by flotation and/or sedimentation in a continuous concentration gradient of sucrose. The purity of the different fractions was then evaluated according to four purity criteria: (i) the A280/delta A500 ratio, (ii) the moles of phospholipid per mole of rhodopsin, (iii) the fatty acid composition, and (iv) the interfacial properties of ROS membranes. All the purity criteria, except the A280/delta A500 ratio, were found to be adequate. From our results, the A280/delta A500 ratio cannot be used alone to characterize ROS purity. Furthermore, the phospholipid-to-rhodopsin ratio appears as the best purity criterion because of its reliability, its higher sensitivity, and its ease of achievement. It is noteworthy that mechanical treatment of the retinas dramatically affects the purification of ROS.  相似文献   

8.
The evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes is examined based on protein sequence data. Phylogenies and common signature sequences in some of the most conserved proteins point to a close evolutionary relationship between Archaebacteria and Gram-positive bacteria. The monophyletic nature and distinctness of the Archaebacterial domain is not supported by many of the phylogenies. Within Gram-negative bacteria, cyanobacteria are indicated as the deepest branching lineage, and a clade consisting of Archaebacteria, Gram-positive bacteria and cyanobacteria is supported by signature sequences in many proteins. However, the division within the prokaryotic species viz. Archaebacteria Gram-positive bacteria Cyanobacteria other groups of Gram-negative bacteria, is indicated to be not very rigid but, instead is an evolutionary continuum. It is expected that certain species will be found which represent intermediates in the above transitions. By contrast to the evolutionary relationships within prokaryotes, the eukaryotic species, which are structurally very different, appear to have originated by a very different mechanism. Protein phylogenies and signature sequences provide evidence that the eukaryotic nuclear genome is a chimera which has received major contributions from both an Archaebacterium and a Gram-negative bacterium. To explain these observations, it is suggested that the ancestral eukaryotic cell arose by a symbiotic fusion event between the above parents and that this fusion event led to the origin of both nucleus and endoplasmic reticulum. The monophyletic nature of all extant eukaryotic species further suggests that a 'successful primary fusion' between the prokaryotic species that gave rise to the ancestral eukaryotic cell took place only once in the history of this planet.  相似文献   

9.
Serpins in prokaryotes   总被引:7,自引:0,他引:7  
Members of the serpin (serine proteinase inhibitor) superfamily have been identified in higher multicellular eukaryotes (plants and animals) and viruses but not in bacteria, archaea, or fungi. Thus, the ancestral serpin and the origin of the serpin inhibitory mechanism remain obscure. In this study we characterize 12 serpin-like sequences in the genomes of prokaryotic organisms, extending this protein family to all major branches of life. Notably, these organisms live in dramatically different environments and some are evolutionarily distantly related. A sequence-based analysis suggests that all 12 serpins are inhibitory. Despite considerable sequence divergence between the proteins, in four of the 12 sequences the region of the serpin that determines proteinase specificity is highly conserved, indicating that these inhibitors are likely to share a common target. Inhibitory serpins are typically prone to polymerization upon heating; thus, the existence of serpins in the moderate thermophilic bacterium Thermobifida fusca, the thermophilic bacterium Thermoanaerobacter tengcongensis, and the hyperthermophilic archaeon Pyrobaculum aerophilum is of particular interest. Using molecular modeling, we predict the means by which heat stability in the latter protein may be achieved without compromising inhibitory activity.  相似文献   

10.
Engineering challenges in high density cell culture systems   总被引:2,自引:0,他引:2  
Ozturk SS 《Cytotechnology》1996,22(1-3):3-16
High density cell culture systems offer the advantage of production of bio-pharmaceuticals in compact bioreactors with high volumetric production rates; however, these systems are difficult to design and operate. First of all, the cells have to be retained in the bioreactor by physical means during perfusion. The design of the cell retention is the key to performance of high density cell culture systems. Oxygenation and media design are also important for maximizing the cell number. In high density perfusion reactors, variable cell density, and hence the metabolic demand, require constant adjustment of perfusion rates. The use of cell specific perfusion rate (CSPR) control provides a constant environment to the cells resulting in consistent production. On-line measurement of cell density and metabolic activities can be used for the estimation of cell densities and the control of CSPR. Issues related to mass transfer and mixing become more important at high cell densities. Due to the difference in mass transfer coefficients for oxygen and CO2, a significant accumulation of dissolved CO2 is experienced with silicone tubing aeration. Also, mixing is observed to decrease at high densities. Base addition, if not properly done, could result in localized cell lysis and poor culture performance. Non-uniform mixing in reactors promotes the heterogeneity of the culture. Cell aggregation results in segregation of the cells within different mixing zones. This paper discusses these issues and makes recommendations for further development of high density cell culture bioreactors.  相似文献   

11.
Rather recently it has become clear that prokaryotes (Archaea and Bacteria) are able to glycosylate proteins. A literature survey revealed the different types of glycoproteins. They include mainly surface layer (S-layer) proteins, flagellins, and polysaccharide-degrading enzymes. Only in a few cases is structural information available. Many different structures have been observed that display much more variation than that observed in eukaryotes. A few studies have given evidence for the function of the prokaryotic glycoprotein glycans. Also from the biosynthetic point of view, information is rather scarce. Due to their different cell structure, prokaryotes have to use mechanisms different from those found in eukaryotes to glycosylate proteins. However, from the fragmented data available for the prokaryotic glycoproteins, similarities with the eukaryotic system can be noticed. Received: 24 February 1997 / Accepted: 13 May 1997  相似文献   

12.
Photoregulation in prokaryotes   总被引:3,自引:0,他引:3  
The spectroscopic identification of sensory rhodopsin I by Bogomolni and Spudich in 1982 provided a molecular link between the light environment and phototaxis in Halobacterium salinarum, and thus laid the foundation for the study of signal transducing photosensors in prokaryotes. In recent years, a number of new prokaryotic photosensory receptors have been discovered across a broad range of taxa, including dozens in chemotrophic species. Among these photoreceptors are new classes of rhodopsins, BLUF-domain proteins, bacteriophytochromes, cryptochromes, and LOV-family photosensors. Genetic and biochemical analyses of these receptors have demonstrated that they can regulate processes ranging from photosynthetic pigment biosynthesis to virulence.  相似文献   

13.
14.
Ma B  Simala-Grant JL  Taylor DE 《Glycobiology》2006,16(12):158R-184R
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.  相似文献   

15.
Homologous recombination in prokaryotes: enzymes and controlling sites   总被引:1,自引:0,他引:1  
G R Smith 《Génome》1989,31(2):520-527
A common step in prokaryotic recombination appears to be the synapsis of the 3'-end of single-stranded DNA with duplex DNA to form a D-loop. The enzymatic mechanisms by which 3'-ends are produced and by which D-loops are converted into recombinant molecules are illustrated by proposed mechanisms of recombination by the Escherichia coli RecBCD pathway and the phage lambda Red pathway. The enzymes promoting recombination and the special DNA sites at which they act are emphasized. Recombination by other E. coli pathways and in other prokaryotes is compared with these mechanisms.  相似文献   

16.
Cell cultures of higher organisms, especially human cells, are increasingly used in medical, pharmaceutical, and scientific research. The main difficulty for cell cultures is hidden nonlethal contamination by mycoplasmas, viruses, and cross contamination with other cells. We suggest using PCR kits designed and officially employed in clinical diagnostics as an accessible and reliable method for monitoring the purity of cell cultures. We tested 50 human cell lines using commercial diagnostic systems for detection of papillomaviruses, herpes viruses, adenoviruses, Mycoplasma hominis, and total bacterial mass. No contamination was revealed in the cell lines tested. For the cell lines that contained integrated parts of viral genomes, the presence of the corresponding DNA sequences was confirmed. These diagnostic systems can be effectively used to test the purity of cell lines and for qualitative detection of possible contamination, as well as for quantitative evaluations using calculation of viral load, just as is practiced in clinical diagnostics.  相似文献   

17.
18.
BACKGROUND: Erythroblasts have been the most encouraging candidate cell type for noninvasive prenatal genetic investigation. We previously showed that human erythroblasts can be recovered from bone marrow and blood bank buffy coats by a physical cell separation. In the present study, we modified our previous methodology, taking into account the peculiar behavior of erythroblasts in response to modifications of pH and osmolality of the separation medium. METHODS: Twenty to forty milliters of cord blood were initially centrifuged on Ficoll/diatrizoate (1.085 g/ml). The interphase cells were further separated on a continuous density gradient (1.040-1.085 g/ml). Two different gradients were initially compared: the first was iso-osmolar and neutral, whereas the second also contained an ionic strength gradient and a pH gradient (triple gradient). A subsequent monocyte depletion was performed by using magnetic microbeads coated with anti-CD14 monoclonal antibody (mAb), and erythroblasts were purified by sedimentation velocity. Purified cells were investigated by analyses with fluorescence-activated cell sorting (FACS) and fluorescence in situ hybridization (FISH) and immunocytochemistry with mAb against fetal hemoglobin and were cultured in vitro. RESULTS: When nucleated cells were spun on an iso-osmolar and neutral continuous density gradient, two separated bands of nucleated red blood cells (NRBCs) were obtained: a light fraction banding at 1.062 g/ml and an heavy fraction banding at 1.078 g/ml. Conversely, when cells were spun in the triple gradient, NRBCs were shifted to the low-density region. Monocyte depletion by immunomagnetic microbeads and velocity sedimentation provided a pure erythroblast population. FACS and FISH analyses and immunocytochemistry substantiated the purity of the isolated cell fraction, which was successfully cultured in vitro. CONCLUSIONS: We have shown that fetal erythroblasts can be purified up to homogeneity from cord blood, but further refinements of the isolation procedure are necessary before the same results can be obtained from maternal peripheral blood.  相似文献   

19.
Mast cells (MCs) are responsible for the innate immune response. Rat MCs are more suitable than mouse MCs as models of specific parasite infection processes and ovalbumin-induced asthma. Rat peritoneum-derived MCs and RBL-2H3 cells (an MC cell line) are widely used in disease studies. However, the application of rat bone marrow-derived MCs (BMMCs) are poorly documented in terms of the methodology of rat BMMC isolation. Here, we describe a relatively rapid, efficient, and simple method for the cultivation of rat BMMCs. As compared to previous protocols, rat BMMCs produced with the proposed protocol exhibited advantages in differentiation, proliferation, lifespan, and functionality, which should prove useful for studies of mucosal MC diseases in specific rat models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号