首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant growth-promoting rhizobacteria (PGPR) affect plant growth through various mechanisms, such as indole-3-acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and biofilm formation. The aim of the study reported here was to isolate and characterize rhizobacteria that produce quorum-sensing signal molecules and other PGPR-related molecules. A biofilm-forming bacterium, GS2, was isolated from the rhizosphere of a sesame plant and subsequently found to produce two quorum-sensing signal molecules that were identified as N-hexanoyl-L-homoserine lactone (m/z 200) and N-octanoyl-L-homoserine lactone (m/z 228) by liquid chromatography–tandem mass spectrometry analysis. The strain was also found to produce IAA (17.2 μg mL?1), gibberellins (113.7 μg mL?1), and ACC deaminase (9.7 μM α-ketobutyrate mg?1 protein h?1). The strain was identified as Serratia glossinae based on a comparison of 16S rRNA gene sequences. Inoculation of the strain promoted growth of a gibberellin-deficient rice dwarf mutant (Waito-C). Different growth attributes, including shoot and root elongation, chlorophyll content, and plant weight could be attributed to the PGPR characteristics of strain GS2. These results suggest that S. glossinae strain GS2 can serve as a microbial agent that improves plant growth.  相似文献   

2.
d-Sorbitol-6-phosphate 2-dehydrogenase (S6PDH, E.C. 1.1.1.140) catalyzes the NADH-dependent conversion of d-fructose 6-phosphate (F6P) to d-sorbitol 6-phosphate (S6P). In this work, recombination and characterization of Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase are reported. Haloarcula marismortui d-sorbitol-6-phosphate 2-dehydrogenase was expressed in P. pastoris and Arabidopsis thaliana. Enzyme assay indicated that HmS6PDH catalyzes the reduction of d-fructose 6-phosphate to d-sorbitol 6-phosphate and HmS6PDH activity was enhanced by NaCl. Furthermore, transgenic A. thaliana ectopic expressing HmS6PDH accumulate more sorbitol under salt stress. These results suggest that the ectopic expression of HmS6PDH in plants can facilitate future studies regarding the engineering and breeding of salt-tolerant crops.  相似文献   

3.
4.
S-11C-methyl-l-cysteine (LMCYS) is an attractive amino acid tracer for clinical tumor positron emission tomography (PET) imaging. d-isomers of some radiolabeled amino acids are potential PET tracers for tumor imaging. In this work, S-11C-methyl-d-cysteine (DMCYS), a d-amino acid isomer of S-11C-methyl-cysteine for tumor imaging was developed and evaluated. DMCYS was prepared by 11C-methylation of the precursor d-cysteine, with an uncorrected radiochemical yield over 50 % from 11CH3I within a total synthesis time from 11CO2 about 12 min. In vitro competitive inhibition studies showed that DMCYS uptake was primarily transported through the Na+-independent system L, and also the Na+-dependent system B0,+ and system ASC, with almost no system A. In vitro incorporation experiments indicated that almost no protein incorporation was found in Hepa 1–6 hepatoma cell lines. Biodistribution studies demonstrated higher uptake of DMCYS in pancreas and liver at 5 min post-injection, relatively lower uptake in brain and muscle, and faster radioactivity clearance from most tissues than those of l-isomer during the entire observation time. In the PET imaging of S180 fibrosarcoma–bearing mice and turpentine-induced inflammatory model mice, 2-18F-fluoro-2-deoxy-d-glucose (FDG) exhibited significantly high accumulation in both tumor and inflammatory lesion with low tumor-to-inflammation ratio of 1.40, and LMCYS showed low tumor-to-inflammation ratio of 1.64 at 60 min post-injection. By contrast, DMCYS showed moderate accumulation in tumor and very low uptake in inflammatory lesion, leading to relatively higher tumor-to-inflammation ratio of 2.25 than 11C-methyl-l-methionine (MET) (1.85) at 60 min post-injection. Also, PET images of orthotopic transplanted glioma models demonstrated that low uptake of DMCYS in normal brain tissue and high uptake in brain glioma tissue were observed. The results suggest that DMCYS is a little better than the corresponding l-isomers as a potential PET tumor-detecting agent and is superior to MET and FDG in the differentiation of tumor from inflammation.  相似文献   

5.
During our search for novel prenyltransferases, a putative gene ATEG_04218 from Aspergillus terreus raised our attention and was therefore amplified from strain DSM 1958 and expressed in Escherichia coli. Biochemical investigations with the purified recombinant protein and different aromatic substrates in the presence of dimethylallyl diphosphate revealed the acceptance of all the tested tryptophan-containing cyclic dipeptides. Structure elucidation of the main enzyme products by NMR and MS analyses confirmed the attachment of the prenyl moiety to C-7 of the indole ring, proving the identification of a cyclic dipeptide C7-prenyltransferase (CdpC7PT). For some substrates, reversely C3- or N1-prenylated derivatives were identified as minor products. In comparison to the known tryptophan-containing cyclic dipeptide C7-prenyltransferase CTrpPT from Aspergillus oryzae, CdpC7PT showed a much higher substrate flexibility. It also accepted cyclo-l-Tyr-l-Tyr as substrate and catalyzed an O-prenylation at the tyrosyl residue, providing the first example from the dimethylallyltryptophan synthase (DMATS) superfamily with an O-prenyltransferase activity towards dipeptides. Furthermore, products with both C7-prenyl at tryptophanyl and O-prenyl at tyrosyl residue were detected in the reaction mixture of cyclo-l-Trp-l-Tyr. Determination of the kinetic parameters proved that (S)-benzodiazepinedione consisting of a tryptophanyl and an anthranilyl moiety was accepted as the best substrate with a K M value of 204.1 μM and a turnover number of 0.125 s?1. Cyclo-l-Tyr-l-Tyr was accepted with a K M value of 1,411.3 μM and a turnover number of 0.012 s?1.  相似文献   

6.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

7.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

8.
9.
Escherichia coliL-asparaginase, an antileukaemic agent in man1, inhibits in vitro mitogen or antigen-induced blastogenesis in man2,3 and in animals (M. Bennett, E. G. Mayhew and T. Han, unpublished data) and suppresses bone-marrow derived antibody precursor cells in the mouse4. We now report that another L-asparaginase preparation—from Erwinia carotovora—also possesses antileukaemic activity5,6 and has a more pronounced immunosuppressive effect on in vitro blastogenesis than the E. coli enzyme.  相似文献   

10.
2,3-Butanediol (2,3-BD) can be produced by fermentation of natural resources like Miscanthus. Bacillus licheniformis mutants, WX-02ΔbudC and WX-02ΔgldA, were elucidated for the potential to use Miscanthus as a cost-effective biomass to produce optically pure 2,3-BD. Both WX-02ΔbudC and WX-02ΔgldA could efficiently use xylose as well as mixed sugars of glucose and xylose to produce optically pure 2,3-BD. Batch fermentation of M. floridulus hydrolysate could produce 21.6 g/L d-2,3-BD and 23.9 g/L meso-2,3-BD in flask, and 13.8 g/L d-2,3-BD and 13.2 g/L meso-2,3-BD in bioreactor for WX-02ΔbudC and WX-02ΔgldA, respectively. Further fed-batch fermentation of hydrolysate in bioreactor showed both of two strains could produce optically pure 2,3-BD, with 32.2 g/L d-2,3-BD for WX-02ΔbudC and 48.5 g/L meso-2,3-BD for WX-02ΔgldA, respectively. Collectively, WX-02ΔbudC and WX-02ΔgldA can efficiently produce optically pure 2,3-BD with M. floridulus hydrolysate, and these two strains are candidates for industrial production of optical purity of 2,3-BD with M. floridulus hydrolysate.  相似文献   

11.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

12.
The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-d-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.  相似文献   

13.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

14.
This study aimed to isolate acaricidal active fractions from acetone extract of Aloe vera L. and investigate the toxicity of these fractions against Tetranychus cinnabarinus (T. cinnabarinus) and Panonychus citri (P. citri). Acetone extract of A. vera L. was isolated by immersing in acetone for 72 h, and diverse fractions were fractionated by column chromatography. The acaricidal activity of each fractions was evaluated by corrected mortality of T. cinnabarinus through slide-dip bioassay. The 8th and 13th fractions of acetone extract with good acaricidal activity were indentified by LC/MS, and the toxicity of these two fractions to T. cinnabarinus and P. citri was identified by regression analysis. Acetone extract of A. vera L. exhibited obvious acaricidal activity, from which a total of 18 fractions were isolated. The 8th and 13th fractions with strong acaricidal activity against T. cinnabarinus were identified to be 3-O-alpha-d-mannopyranosyl-d-mannopyranose (OAMM) and aloe emodin. When compared with spirodiclofen, both OAMM and aloe emodin exhibited higher toxicity to T. cinnabarinus, while only OAMM exhibited a higher toxicity to P. citri (P < 0.05). OAMM and aloe emodin isolated from acetone extract of A. vera L. exhibited obvious acaricidal activities against T. cinnabarinus and P. citri.  相似文献   

15.
Flow cytometry was used to determine ploidy levels in the Czech and Slovak taxa of the genusPseudolysimachion (W.D.J. Koch)Opiz (=Veronica auct. p.p.,Scrophulariaceae). In total, 123 populations from the Czech Republic, Slovakia, Ukraine (one locality), Austria (one locality) and Hungary (one locality) were analyzed. InP. maritimum (L.)Á. Löve etD. Löve andP. spicatum (L.)Opiz, two cytotypes were found: diploid (2n=2x=34) and tetraploid (2n=4x=68). In both species the tetraploid cytotype predominated (P. maritimum: 41 tetraploid populations out of 45;P. spicatum: 57 tetraploid populations out of 58). The two cytotypes ofP. maritimum have no taxonomic significance because ploidy level is not obviously correlated with morphology, distribution pattern or ecology. Tetraploid populations ofP. spicatum belong to two morphologically different subspecies, subsp.spicatum and subsp.fischeri Trávní?ek. The diploid cytotype (one population only) should be provisionally classified as a third subspecies ofP. spicatum, which is morphologically similar to the Asian subsp.porphyrianum (Pavlov)Trávní?ek. Only diploid plants (2n=2x=34) ofP. orchideum (Crantz)Wraber were found; all 13 populations that were analyzed belong toP. orchideum s.str. One diploid population sample ofP. spurium subsp.foliosum (Waldst. etKit.)Holub (2n=2x=34) and one tetraploid sample ofP. incanum subsp.pallens (Host)Trávní?ek (2n=4x=68) were also analyzed. In addition, three tetraploid populations of hybrid origin were investigated:P. maritimum ×P. spicatum subsp.spicatum (one population) andP. maritimum ×P. spurium subsp.foliosum (two populations). While hybrid plants ofP. maritimum ×P. spicatum arose from tetraploid parental species, plants ofP. maritimum ×P. spurium probably resulted from a cross between tetraploidP. maritimum and diploidP. spurium. The putative origin and evolutionary importance of polyploids in thePseudolysimachion are discussed.  相似文献   

16.
Bioconversion of dl-2-amino-Δ2-thiazoline-4-carboxylic acid (dl-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of l-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated l-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve l-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of dl-ATC for the in situ removal of l-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for l-cysteine and low adsorption for dl-ATC, which is a favorable option. With in situ addition of 60 g L?1 resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L?1 of dl-ATC was converted to l-cysteine with 90.4 % of yield and 28.6 mmol L?1 h?1 of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of l-cysteine was improved by 2.27-fold using ISPR method.  相似文献   

17.
Previously we have characterized a threonine dehydratase mutant TDF383V (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHASP176S, D426E, L575W (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best l-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AKA279T (encoded by lysC1) and a homoserine dehydrogenase mutant HDG378S (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AKA279T is completely resistant to feed-back inhibition by l-threonine and l-lysine, and that HDG378S is partially resistant to l-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive l-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from l-lysine (decreased by 50.1 %) to l-threonine (4.85 g/L) with minor l-isoleucine and no l-homoserine accumulation, further co-expressing ilvA1 completely depleted l-threonine and strongly shifted carbon flux from l-lysine (decreased by 83.0 %) to l-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TDF383V might be the main driving force for l-isoleucine over-synthesis in this case, and the partially feed-back resistant HDG378S might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.  相似文献   

18.
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, d-lactate has attracted much attention. To improve d-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest d-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of d-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC–MS and LC–MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with d-lactate production. Moreover, a quantitative iTRAQ–LC–MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on d-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved d-lactate production. These findings provide the first omics view of cell growth and d-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of d-lactate.  相似文献   

19.
Tea (Camellia sinensis [L.] O. Kuntze) plant, one of the most important plantation crops in the world, is infected by a fungus called Exobasidium vexans leading to dreaded blister blight disease. The disease may result in crop losses up to 35% which directly affect the tea industry. Solanum tuberosum endo-1,3-beta-d-glucanase was cloned into tea genome via Agrobacterium-mediated transformation. The transformation event initially gave 32 kanamycin-resistant plantlets, out of which PCR analysis confirmed only 10 plantlets about the integration of transgene in the plant genome. Real-time PCR study detected transgene expression in six transgenic plantlets. Upregulation of endogenous C. sinensis pathogenesis-related (PR) genes like PR3 (chitinase I) gene and PR5 (thaumatin-like protein) gene also occurred in transgenic plantlets. Detached leaf infection assay showed resistance to E. vexans in greenhouse-acclimated transgenic plantlets. An inhibitory activity against E. vexans was noticed on the detached leaves of transgenic plantlets compared to control. Transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area unlike the formation of fungal lesion on control plantlet. Thus, it can be inferred that constitutive expression of the potato endo-1,3-beta-d-glucanase gene can be a strategy to produce blister blight-resistant tea.  相似文献   

20.
A divalent cation-independent 16 kDa d-galactose binding lectin (AKL-2) was isolated from eggs of sea hare, Aplysia kurodai. The lectin recognized d-galactose and d-galacturonic acid and had a 32 kDa dimer consisting of two disulfide-bonded 16 kDa subunits. Eighteen N-terminus amino acids were identified by Edman degradation, having unique primary structure. Lectin blotting analysis with horseradish peroxidase-conjugated lectins has shown that AKL-2 was a glycoprotein with complex type oligosaccharides with N-acetyl d-glucosamine and mannose at non-reducing terminal. Two protein bands with 38 and 36 kDa in the crude extract of sea hare eggs after purification of the lectin was isolated by AKL-2-conjugated Sepharose column and elution with 0.1 M lactose containing buffer. It suggested that the lectin binds with an endogenous ligand in the eggs. AKL-2 kept extreme stability on haemagglutination activity if it was treated at pH 3 and 70 °C for 1 h. Glycan binding profile of AKL-2 by frontal affinity chromatography technology using 15 pyridylamine labeled oligosaccharides has been appeared that the lectin uniquely recognized globotriose (Galα1-4Galβ1-4Glc; Gb3) in addition to bi-antennary complex type N-linked oligosaccharides with N-acetyllactosamine. Surface plasmon resonance analysis of AKL-2 against a neo-glycoprotein, Gb3-human serum albumin showed the k ass and k diss values are 2.4 × 103 M?1 s?1 and 3.8 × 10?3 s?1, respectively. AKL-2 appeared cytotoxicity against both Burkitt’s lymphoma Raji cell and erythroleukemia K562. The activity to Raji by the lectin was preferably cancelled by the co-presence of melibiose mimicing Gb3. On the other hand, K562 was cancelled effectively by lactose than melibiose. It elucidated that AKL-2 had cytotoxic ability mediated glycans structure to cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号