首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantification and community of bacteria in the gastrointestinal (GI) tract (stomach, jejunum, ileum, cecum, colon and rectum) of red kangaroos (Macropus rufus) were examined by using real-time PCR and paired-end Illumina sequencing. The quantification of bacteria showed that the number of bacteria in jejunum and rectum was significantly lower than that in colon and cecum (P < 0.05). A total of 1,872,590 sequences was remained after quality-filtering and 50,948 OTUs were identified at the 97 % similarity level. The dominant phyla in the GI tract of red kangaroos were identified as Actinobacteria, Bacteroidetes and Firmicutes. At the level of genus, the samples from different parts of GI tract clustered into three groups: stomach, small intestine (jejunum and ileum) and large intestine (cecum and rectum). Prevotella (29.81 %) was the most dominant genus in the stomach and significantly (P < 0.05) higher than that in other parts of GI tract. In the small intestine, Bifidobacterium (33.04, 12.14 %) and Streptococcus (22.90, 19.16 %) were dominant genera. Unclassified Ruminococcaceae was the most dominant family in large intestine and the total relative abundance of unclassified bacteria was above 50 %. In identified genera, Dorea was the most important variable to discriminate large intestine and it was significantly higher in cecum than in stomach, small intestine and colon (P < 0.05). Bifidobacterium (21.89 %) was the only dominant genus in colon. Future work on culture in vitro and genome sequencing of those unidentified bacteria might give us insight into the function of these microorganisms in the GI tract. In addition, the comparison of the bacterial community in the foregut of kangaroos and other herbivores and the rumen might give us insight into the mechanism of fiber degradation and help us exploit approaches to improve the feed efficiency and subsequently, reduce the methane emission from herbivores.  相似文献   

2.
Gut microbial diversity and the core microbiota of the Jinhua pig, which is a traditional, slow-growing Chinese breed with a high body-fat content, were examined from a total of 105 fecal samples collected from 6 groups of pigs at 3 weaning ages that originated from 2 strains and were raised on 3 different pig farms. The bacterial community was analyzed following high-throughput pyrosequencing of 16S rRNA genes, and the fecal concentrations of short-chain fatty acids (SCFAs) were measured by gas chromatograph. Our results showed that Firmicutes and Bacteroidetes were the dominant phyla, and Lactobacillus, Streptococcus, Clostridium, SMB53, and Bifidobacterium were the most abundant genera. Fifteen predominant genera present in every Jinhua pig sample constituted a phylogenetic core microbiota and included the probiotics Lactobacillus and Bifidobacterium, and the SCFA-producing bacteria Clostridium, Prevotella, Bacteroides, Coprococcus, Roseburia, Ruminococcus, Blautia, and Butyricicoccus. Comparisons of the microbiota compositions and SCFA concentrations across the 6 groups of pigs demonstrated that genetic background and weaning age affected the structure of the gut microbiota more significantly than the farm. The relative abundance of the core genera in the pigs, including Lactobacillus, Clostridium, Prevotella, Bacteroides, Roseburia, Ruminococcus, Blautia, and Butyricicoccus varied dramatically in pigs among the 2 origins and 3 weaning ages, while Oscillospira, Megasphaera, Parabacteroides, and Corynebacterium differed among pigs from different farms. Interestingly, there was a more significant influence of strain and weaning age than of rearing farm on the SCFA concentrations. Therefore, strain and weaning age appear to be the more important factors shaping the intestinal microbiome of pigs.  相似文献   

3.
The microbiota of whole crop corn silage and feces of silage-fed dairy cows were examined. A total of 18 dairy cow feces were collected from six farms in Japan and China, and high-throughput Illumina sequencing of the V4 hypervariable region of 16S rRNA genes was performed. Lactobacillaceae were dominant in all silages, followed by Acetobacteraceae, Bacillaceae, and Enterobacteriaceae. In feces, the predominant families were Ruminococcaceae, Bacteroidaceae, Clostridiaceae, Lachnospiraceae, Rikenellaceae, and Paraprevotellaceae. Therefore, Lactobacillaceae of corn silage appeared to be eliminated in the gastrointestinal tract. Although fecal microbiota composition was similar in most samples, relative abundances of several families, such as Ruminococcaceae, Christensenellaceae, Turicibacteraceae, and Succinivibrionaceae, varied between farms and countries. In addition to the geographical location, differences in feeding management between total mixed ration feeding and separate feeding appeared to be involved in the variations. Moreover, a cow-to-cow variation for concentrate-associated families was demonstrated at the same farm; two cows showed high abundance of Succinivibrionaceae and Prevotellaceae, whereas another had a high abundance of Porphyromonadaceae. There was a negative correlation between forage-associated Ruminococcaceae and concentrate-associated Succinivibrionaceae and Prevotellaceae in 18 feces samples. Succinivibrionaceae, Prevotellaceae, p-2534-18B5, and Spirochaetaceae were regarded as highly variable taxa in this study. These findings help to improve our understanding of variation and similarity of the fecal microbiota of dairy cows with regard to individuals, farms, and countries. Microbiota of naturally fermented corn silage had no influence on the fecal microbiota of dairy cows.  相似文献   

4.
The purpose of this study was to investigate genetic biomarkers of zoonotic enteric pathogens and antibiotic-resistant genes (ARGs) in the feces of white-tailed deer (Odocoileus virginianus) as related to proximity of deer to land that receives livestock manure or human waste biosolid fertilizers. Deer feces were collected in the St. Lawrence River Valley and Adirondack State Park of New York. Campylobacter spp. 16S rDNA was detected in 12 of 232 fecal samples (8 of 33 sites). Salmonellae were cultivated from 2 of 182 fecal samples (2 of 29 sites). Genetic virulence markers for Shiga-like toxin I (stx1) and enterohemolysin (hylA) were each detected in one isolate of Escherichia coli; E. coli O157 was not detected in any of 295 fecal samples. ARGs detected in deer feces included ermB (erythromycin-resistant gene; 9 of 295 fecal samples, 5 of 38 sites), vanA (vancomycin-resistant gene; 93 of 284 samples, 33 of 38 sites), tetQ (tetracycline-resistant gene; 93 of 295 samples, 25 of 38 sites), and sul(I) (sulfonamide-resistant gene; 113 of 292 samples, 28 of 38 sites). Genetic markers of pathogens and ARGs in deer feces were spatially associated with collection near concentrated animal feeding operations (CAFOs; Campylobacter spp., tetQ, and ermB) and land-applied biosolids (tetQ). These results indicate that contact with human waste biosolids or animal manure may be an important method of pathogen and ARG transmission and that deer in proximity to land-applied manure and human waste biosolids pose increased risk to nearby produce and water quality.  相似文献   

5.
Bacterial species of Bacillus, Lactobacillus, and Bifidobacterium in the intestinal tract have been used as probiotics. Selections for probiotic candidates by the culture-based approaches are time-consuming and labor-consuming. The aim of this study was to develop a new method based on sequencing strategies to select the probiotic Bacillus, Lactobacillus, and Bifidobacterium. The Illumina-based sequencing strategies with different specific primers for Bacillus, Clostridium, and Bifidobacterium were applied to analyze diversity of the genera in goat feces. The average number of different Bacillus, Clostridium, and Bifidobacterium OTUs (operational taxonomic units) at the 97% similarity level ranged from 1922 to 63172. The coverage index values of Bacillus, Clostridium, and Bifidobacterium calculated from the bacterial OTUs were 0.89, 0.99, and 1.00, respectively. The most genera of Bacillus (37.9%), Clostridium (53%), and Bifidobacterium (99%) were detected in goat feces by the Illumina-based sequencing with the specific primers of the genera, respectively. Higher phylogenetic resolutions of the genera in goat feces were successfully established. The results suggest that the selection for probiotic Bacillus, Clostridium, and Bifidobacterium based on the Illumina sequencing with their specific primers is reliable and feasible, and the core Bacillus, Clostridium, and Bifidobacterium species of healthy goats possess the potentials as probiotic microbial consortia.  相似文献   

6.
Familial adenomatous polyposis (FAP) is a hereditary predisposition to formation of colon polyps that can progress to colorectal cancer (CRC). The severity of polyposis varies substantially within families bearing the same germline mutation in the adenomatous polyposis coli (APC) tumour suppressor gene. The progressive step-wise accumulation of genetic events in tumour suppressor genes and oncogenes leads to oncogenic transformation, with driver alterations in the tumour protein p53 (TP53) gene playing a key role in advanced stage CRC. We analysed groups of pigs carrying a truncating mutation in APC (APC1311/+; orthologous to human APC1309/+) to study the influence of TP53 polymorphisms and expression on the frequency of polyp formation and polyp progression in early-stage FAP. Five generations of APC1311/+ pigs were examined by colonoscopy for polyposis severity and development. A total of 19 polymorphisms were found in 5′-flanking, coding, and 3′ untranslated regions of TP53. The distribution of TP53 genotypes did not differ between APC1311/+ pigs with low (LP) and high (HP) number of colon polyps. p53 mRNA expression was analysed in distally located normal mucosa samples of wild-type pigs, APC1311/+ LP and HP pigs, and also in distally located polyp samples histologically classified as low-grade (LG-IEN) and high-grade intraepithelial dysplastic (HG-IEN) from APC1311/+ pigs. p53 mRNA expression was found to be significantly elevated in HG-IEN compared to LG-IEN samples (p?= 0.012), suggesting a role for p53 in the early precancerous stages of polyp development.  相似文献   

7.
The cecum plays an important role in the feed fermentation of ruminants. However, information is very limited regarding the cecal microbiota and their methane production. In the present study, the cecal content from twelve local Chinese goats, fed with either a hay diet (0% grain) or a high-grain diet (71.5% grain), were used to investigate the bacterial and archaeal community and their methanogenic potential. Microbial community analysis was determined using high-throughput sequencing of 16S rRNA genes and real-time PCR, and the methanogenesis potential was assessed by in vitro fermentation with ground corn or hay as substrates. Compared with the hay group, the high-grain diet significantly increased the length and weight of the cecum, the proportions of starch and crude protein, the concentrations of volatile fatty acids and ammonia nitrogen, but decreased the pH values (P?<?0.05). The high-grain diet significantly increased the abundances of bacteria and archaea (P?<?0.05) and altered their community. For the bacterial community, the genera Bifidobacterium, Prevotella, and Treponema were significantly increased in the high-grain group (P?<?0.05), while Akkermansia, Oscillospira, and Coprococcus were significantly decreased (P?<?0.05). For the archaeal community, Methanosphaera stadtmanae was significantly increased in the high-grain group (P?<?0.05), while Methanosphaera sp. ISO3-F5 was significantly decreased (P?<?0.05). In the in vitro fermentation with grain as substrate, the cecal microorganisms from the high-grain group produced a significantly higher amount of methane and volatile fatty acids (P?<?0.05), and produced significantly lower amount of lactate (P?<?0.05). Conclusively, high-grain diet led to more fermentable substrates flowing into the hindgut of goats, resulting in an enhancement of microbial fermentation and methane production in the cecum.  相似文献   

8.
An experiment was conducted in weanling pigs (Landrace × Yorkshire × Duroc) to evaluate the effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence. One hundred and forty-four piglets (initial BW 5.96 ± 0.93kg) were randomly allotted to one of the four dietary treatments on the basis of their body weights. The basal diets for each phase (phase 1: days0 to 14; phase 2: days15 to 28) were formulated to contain minimal Fe and then supplemented with gradient levels of Fe (0, 50, 100, and 250mg/kg) from ferrous sulfate. Feces were collected on days14 and 28 and used for the analysis of microbial count and trace minerals. Eight piglets from each treatment (two piglets per pen) were bled at 0, 7, 14, 21, and 28days to determine their hematological and plasma Fe status. In addition, two piglets from each pen (eight piglets per treatment) were killed at days14 and 28 to determine liver mineral concentrations. Pigs fed supplemental 250ppm Fe showed lowest overall average daily gain (linear, p = 0.036). Diarrhea incidence was linearly increased (p < 0.001) with supplemental Fe level. On days14, coliform population in normal feces was increased (p = 0.036) linearly with supplemental Fe level, and there were higher (p = 0.043) coliform population and lower (p < 0.001) Bifidobacterium spp. in the diarrhea feces. Supplemental Fe linearly (p < 0.05) improved the total red blood cells, hemoglobin, plasma, and liver (p = 0.109) Fe status of pigs and also increased (linear and quadratic, p < 0.001) the fecal excretion of Fe on days14 and 28. It is concluded that increasing the dietary iron levels in piglets improved their hematological status and liver Fe content; however, higher dietary Fe levels might also be associated with the increased diarrhea incidence.  相似文献   

9.
The gut microbiota plays important roles in the health and well-being of animals, and high-throughput sequencing facilitates exploration of microbial populations in the animal gut. However, previous studies have focused on fecal samples instead of the gastrointestinal tract. In this study, we compared the microbiota diversity and composition of intestinal contents of weaned piglets treated with Lactobacillus reuteri or chlortetracycline (aureomycin) using high-throughput sequencing. Nine weaned piglets were randomly divided into three groups and supplemented with L. reuteri, chlortetracycline, or saline for 10 days, and then the contents of three intestinal segments (jejunum, colon, and cecum) were obtained and used for sequencing of the V3–V4 hypervariable region of the 16S rRNA gene. The microbiota diversity and composition in the jejunum were different from those in the colon and cecum among the three treatments. In the jejunum, treatment with L. reuteri increased the species richness of the microbiota, as indicated by the ACE and Chao1 indexes, compared with the chlortetracycline group, in which several taxa were eliminated. In the colon and cecum, relative abundances of the phylum Firmicutes and the genus Prevotella were higher in the chlortetracycline group than in the other groups. Distances between clustered samples revealed that the L. reuteri group was closer to the chlortetracycline group than the control group for jejunum samples, while colon and cecum samples of the L. reuteri group were clustered with those of the control group. This study provides fundamental knowledge for future studies such as the development of alternatives to antibiotics.  相似文献   

10.
Physicochemical and microbiological characteristics of formation waters low-temperature heavy oil reservoirs (Russia) were investigated. The Chernoozerskoe, Yuzhno-Suncheleevskoe, and Severo-Bogemskoe oilfields, which were exploited without water-flooding, were shown to harbor scant microbial communities, while microbial numbers in the water-flooded strata of the Vostochno-Anzirskoe and Cheremukhovskoe oilfields was as high as 106 cells/mL. The rates of sulfate reduction and methanogenesis were low, not exceeding 1982 ng S2–/(L day) and 9045 nL СН4/(L day), respectively, in the samples from water-flooded strata. High-throughput sequencing of microbial 16S rRNA gene fragments in the community of injection water revealed the sequences of the Proteobacteria (74.7%), including Betaproteobacteria (40.2%), Alphaproteobacteria (20.7%), Gammaproteobacteria (10.1%), Deltaproteobacteria (2.0%), and Epsilonproteobacteria (1.6%), as well as Firmicutes (7.9%), Bacteroidetes (4.1%), and Archaea (0.2%). DGGE analysis of microbial mcrA genes in the community of injection water revealed methanogens of the genera Methanothrix, Methanospirillum, Methanobacterium, Methanoregula, Methanosarcina, and Methanoculleus, as well as unidentified Thermoplasmata. Pure cultures of bacteria of the genera Rhodococcus, Pseudomonas, Gordonia, Cellulomonas, etc., capable of biosurfactant production when grown on heavy oil, were isolated. Enrichment cultures of fermentative bacteria producing significant amounts of volatile organic acids (acetic, propionic, and butyric) from sacchariferous substrates were obtained. These acids dissolve the carbonates of oil-bearing rock efficiently. Selection of the efficient microbial technology for enhanced recovery of heavy oil from terrigenous and carbonate strata requires model experiments with microbial isolates and the cores of oil-bearing rocks.  相似文献   

11.
Helicobacter spp. colonize the gastrointestinal tract of humans and animals and have been associated with gastrointestinal diseases. Antarctic habitats are considered pristine ecosystems, but the increase in human activity could be introducing human bacteria hosted into waters and wildlife. However, Helicobacter spp. occurrence has not been studied in Antarctica. The aim of our study was to detect the Helicobacter DNA in different water sources and penguin feces from Greenwich, Dee and Barrientos Islands during summer of 2012 and 2013. High Helicobacter proportion was observed in water sources amplifying the 16S rRNA (33/40) and 23S rRNA genes (37/40) by semi-nested PCR. Similar results were observed in feces from Gentoo penguins (16S rRNA: 32/39, and 23S rRNA: 28/39) and Chinstrap penguins (16S rRNA: 16/17, and 23S rRNA: 15/17) by PCR. The phylogenetic relationship of 16S rRNA and 23S rRNA sequences from penguin feces was closely related to Helicobacter brantae. Analyses of 16S rRNA sequences showed that the majority of water samples are related to penguin (3/6) and Helicobacter pylori (2/6) sequences, but the 23S rRNA sequences matched with Campylobacter and Arcobacter. These results show for the first time the presence of the genus Helicobacter in different Antarctica water sources and in Gentoo and Chinstrap penguin feces. A few 16S rRNA sequences are very closely related to H. pylori, but specific glmM and ureA H. pylori genes were not detected. More studies are needed to determine the Helicobacter species present in this ecosystem and to establish the human impact in these Antarctic Islands.  相似文献   

12.
This study investigated the effects of dietary fresh fermented soybean meal (FSM) on the intestinal microbiota and metabolites, bacterial enzyme activity and intestinal morphology of weaning piglets. A total of 64 weaned piglets were randomly allocated into two treatments. A corn-soybean-based diet was used as the control and other treatment was fed the same basal diet containing 15% fresh FSM. The feeding trial lasted for 21 days. Bacterial community structure and diversity in the cecum and colon were assessed using pyrosequencing-based analysis. The results showed that the phylum level, Firmicutes, Bacteroidetes, Proteobacteria and Tenericutes were dominant in the cecum or colon. Gut Firmicutes increased, while Bacteroidetes and Proteobacteria decreased in the fresh FSM-fed piglets. At the genus level, the relative abundances of butyrate-producing bacteria, Lactobacillus and Prevotella were higher in both cecum and colon of fresh FSM fed piglets. Meanwhile, fresh FSM could promote the development of intestinal morphological and reduce the incidence of diarrhea. The results indicated that fresh FSM might change intestinal function by influencing intestinal microenvironment.  相似文献   

13.
The FUT2 gene was considered as an important candidate for pathogenic infections, while the potential associations between this gene and the production and reproductive traits of pigs have not been explored. In this study, we detected the genetic variants of porcine FUT2 gene and analyzed the associations of the polymorphisms with FUT2 mRNA expression and production and reproductive traits (age at 100 kg, backfat thickness at 100 kg, eye muscle thickness, the number of newborn piglets, the number of weaned piglets, and birth weight) in 100 Large White sows. One single nucleotide polymorphism (SNP) (rs345476947, C→T) in the intron of FUT2 and three genotypes (TT, CT and CC) were determined. Association analysis revealed significant associations between this SNP with the number of newborn piglets and weaned piglets. Furthermore, individuals with the TT genotype had significantly higher numbers of newborn piglets and weaned piglets than those with the CC genotype (P?<?0.05). Quantitative PCR analysis showed that FUT2 expression in individuals with CC genotype was significantly higher than those with TT and CT genotypes in the liver and lymph gland (P?<?0.05) and higher than that of CT in the spleen, kidney, and duodenum (P?<?0.05). These findings indicated that the TT genotype may be a favorable genotype for the reproductive traits of pigs. Our study revealed the genetic variants of the FUT2 gene and identified a promising candidate SNP (rs345476947) associated with the reproductive traits, which has the potential to be applied in selective breeding of pigs.  相似文献   

14.
Cathepsins, growth hormone-releasing hormone (GHRH) and leptin receptor (LEPR) genes have been receiving increasing attention as potential markers for meat quality and pig performance traits. This study investigated the allele variants in four cathepsin genes (CTSB, CTSK, CTSL, CTSS), GHRH and LEPR in pure-bred Ukrainian Large White pigs and evaluated effects of the allele variants on meat quality characteristics. The study was conducted on 72 pigs. Genotyping was performed using PCR–RFLP technique. Meat quality characteristics analysed were intramuscular fat content, tenderness, total water content, ultimate pH, crude protein and ashes. A medium level of heterozygosity values was established for GHRH and LEPR genes which corresponded to very high levels of informativeness indexes. Cathepsins CTSL, CTSB and CTSK had a low level of heterozygosity, and CTSS did not segregate in this breed. Association studies established that intramuscular fat content and tenderness were affected by the allele variance in GHRH and LEPR but not by CTSB and CTSL genes. The GHRH results could be particularly relevant for the production of lean prime cuts as the A allele is associated with both, a lower meat fat content and better tenderness values, which are two attributes highly regarded by consumers. Results of this study suggest that selective breeding towards GHRH/AA genotype would be particularly useful for improving meat quality characteristics in the production systems involving lean Large White lines, which typically have less than 2 % intramuscular fat content.  相似文献   

15.

Background

Modifiable lifestyle factors (e.g. dietary intake and physical activity) are important contributors to weight gain during college. The purpose of this study was to evaluate whether associations exist between body mass index, physical activity, screen time, dietary consumption (fat, protein, carbohydrates, and fiber), and gut microbial diversity during the first year of college. Racially/ethnically diverse college students (n?=?82; 61.0% non-white) at a large Southwestern university completed self-reported physical activity and 24-h recall dietary assessments, height and weight measurements, and provided one fecal sample for gut microbiome analysis. Fecal microbial community composition was assessed with Illumina MiSeq next-generation sequencing of PCR amplified 16S rRNA genes. Post-hoc analyses compared microbial diversity by groups of high and low physical activity and fiber intake using QIIME and LEfSe bioinformatics software.

Results

No statistically significant differences were observed between body mass index and gut microbiome abundance and diversity. Median daily consumption of dietary fiber was 11.2 (7.6, 14.9) g/d, while the median self-reported moderate-to-vigorous physical activity (MVPA) was 55.7 (27.9, 79.3) min/d and screen time 195.0 (195.0, 315.0) min/d. Microbial analysis by LEfSe identified Paraprevotellaceae, Lachnospiraceae, and Lachnospira as important phylotypes in college students reporting greater MVPA, while Enterobacteriaceae and Enterobacteriales were more enriched among students reporting less MVPA (p?<?0.05). Barnesiellaceae, Alphaproteobacteria, and Ruminococcus were more abundant taxa among those consuming less than the median fiber intake (p?<?0.05). Post-hoc analyses comparing weighted UniFrac distance metrics based on combined categories of high and low MVPA and fiber revealed that clustering distances between members of the high MVPA-low fiber group were significantly smaller when compared to distances between members of all other MVPA-fiber groups (p?<?0.0001).

Conclusions

Habitual fiber consumption and MVPA behaviors help explain the differential abundance of specific microbial taxa and overall gut microbial diversity differences in first-year college students.
  相似文献   

16.
Pentachlorophenol (PCP) has been widely used as a pesticide in paddy fields and has imposed negative ecological effect on agricultural soil systems, which are in typically anaerobic conditions. In this study, we investigated the effect of repeated additions of PCP to paddy soil on the microbial communities under anoxic conditions. Acetate was added as the carbon source to induce and accelerate cycles of the PCP degradation. A maximum degradation rate occurred at the 11th cycle, which completely transformed 32.3 μM (8.6 mg L?1) PCP in 5 days. Illumina high throughput sequencing of 16S rRNA gene was used to profile the diversity and abundance of microbial communities at each interval and the results showed that the phyla of Bacteroidates, Firmicutes, Proteobacteria, and Euryarchaeota had a dominant presence in the PCP-dechlorinating cultures. Methanosarcina, Syntrophobotulus, Anaeromusa, Zoogloea, Treponema, W22 (family of Cloacamonaceae), and unclassified Cloacamonales were found to be the dominant genera during PCP dechlorination with acetate. The microbial community structure became relatively stable as cycles increased. Treponema, W22, and unclassified Cloacamonales were firstly observed to be associated with PCP dechlorination in the present study. Methanosarcina that have been isolated or identified in PCP dechlorination cultures previously was apparently enriched in the PCP dechlorination cultures. Additionally, the iron-cycling bacteria Syntrophobotulus, Anaeromusa, and Zoogloea were enriched in the PCP dechlorination cultures indicated they were likely to play an important role in PCP dechlorination. These findings increase our understanding for the microbial and geochemical interactions inherent in the transformation of organic contaminants from iron rich soil, and further extend our knowledge of the PCP-transforming microbial communities in anaerobic soil conditions.  相似文献   

17.
The present study was undertaken to detect the occurrence of beta-lactamase-/AmpC-producing Klebsiella and Escherichia coli in healthy pigs, feed, drinking water, and pen floor or surface soil. The study also intended to detect the clonal relationship between the environmental and porcine isolates to confirm the route of transmission. Rectal swabs and environmental samples were collected from apparently healthy pigs kept in organized or backyard farms in India. The pigs had no history of antibiotic intake. Production of phenotypical beta-lactamase, associated genes, and class I integron gene was detected in E. coli and Klebsiella isolates. The phylogenetic relationship among the isolates was established on the basis of Random amplification of polymorphic DNA banding pattern. Beta-lactamase-producing Klebsiella were isolated from healthy pigs (20.0%), pen floor swabs/surface soil swabs (14.0%), and drinking water (100%). Escherichia coli isolated from healthy pigs (14.4%), pen floor/surface soil (8.0%), and drinking water (33.3%) were detected as beta-lactamase producers. Majority of beta-lactamase-producing isolates possessed blaCTX-M-9. Further, 35 (81%) Klebsiella and all the E. coli isolates were detected as AmpC beta-lactamase ACBL producers and possessed blaAmpC. Sixteen beta-lactamase-producing Klebsiella (37.20%) and 13 E. coli (86.67%) possessed class I integron. Few resistant isolates from environmental sources (surface soil swab and drinking water) and the studied pigs were detected within the same cluster of the dendrogram representing their similarities. The study indicated about the possible role of contaminated environment as a source of beta-lactamase/AmpC-producing Klebsiella and E. coli in pigs.  相似文献   

18.
Expression of Tlr2, Defa, and Muc2 genes in epithelial cells of rat duodenum during prolonged stomach hypoacidity (hypochlorhydria) and after hypoacidity correction by multiprobiotics has been investigated. Elevation of Tlr2, Muc2, and Defa gene expression levels upon the intensification of lipid peroxidation processes in the epithelial cells of the villi and crypts of the rat duodenum under hypoacidic conditions has been demonstrated. Administration of a multiprobiotic under the same conditions downregulated the expression of the aforementioned genes in epithelial cells of the villi and crypts, bringing it to a nearly normal level, and exerted a similar effect on the levels of lipid peroxidation products. The data obtained may be indicative of the involvement of Tlr2, Muc2, and Defa genes in the development of duodenal inflammation induced by dysbiotic changes occurring in prolonged hypochlorhydria.  相似文献   

19.

Background

Toxoplasma gondii is a widespread occurring parasite infecting warm-blooded animals, including pigs and humans. The aims of this study were to estimate the prevalence of anti-T. gondii antibodies and to evaluate risk factors for T. gondii seropositivity in breeding pigs raised in Estonia. Sera from 382 pigs were tested with a commercial direct agglutination test, using a cut-off titer of 40 for seropositivity, for the presence of anti-T. gondii immunoglobulin G antibodies.

Results

Twenty-two (5.8%) of the 382 pigs tested seropositive for T. gondii, and 6 of the 14 herds had at least one seropositive pig. The proportion of seropositive pigs within the herds ranged between 0 and 43%. Gender appeared as a significant factor, with sows having 5.6 times higher odds to be seropositive to T. gondii than boars. Seroprevalence did not increase with age.

Conclusions

Anti-T. gondii antibodies were present in a substantial proportion of breeding pig herds in Estonia. On the other hand, the presence of herds without seropositive pigs illustrates that porcine T. gondii infections can be avoided even in a country where the parasite is endemic and common in several other host species.
  相似文献   

20.
We investigated the bacterial community structure of Soldhar hot spring with extreme high temperature 95°C located in Uttarakhand, India using high throughput sequencing. Bacterial phyla Proteobacteria (88.8%), Deinococcus-Thermus (7.5%), Actinobacteria (2.3%), and Firmicutes (1.07%) were predominated in the sequencing survey, whereas Bacteroidetes, Verrucomicrobia, Aquificae and Acidobacteria were detected in relatively lower abundance in Soldhar hot spring. At the family level, Comamonadaceae (52.5%), Alteromonadaceae (15.9%), and Thermaceae (7.5%) were mostly dominated in the ecosystem followed by Chromatiaceae, Microbacteriaceae, and Cyclobacteriaceae. Besides, members of Rhodobacteraceae, Moraxellaceae, Xanthomonadaceae, Aquificaceae, Enterobacteriaceae, Bacillaceae, Methylophilaceae, etc. were detected as a relatively lower abundance. In the present study we discuss the overall microbial community structure and their relevance to the ecology of the Soldhar hot spring environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号