首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nagai A  Imamura M  Watanabe T  Azuma H 《Life sciences》2008,83(13-14):453-459
In the present experiments, we tried to elucidate whether changes in arginase activity, protein expression of arginase-I and -II, and NO production are involved in accelerating the intimal hyperplasia following administration of cigarette smoke extract (CSE). The intimal hyperplasia was caused by removing endothelial cells with the aid of balloon embolectomy catheter in the right carotid artery of the male rabbit. The left carotid artery underwent sham operation and served as control. CSE was prepared by bubbling a stream of cigarette smoke into phosphate buffered saline. Rabbits were given subcutaneously with CSE once a day for 5 weeks from 1 week before to 4 weeks after the surgery. The specimens were assessed histologically and the intima/media ratio (%) was evaluated as an index of the intimal hyperplasia. The accelerated intimal hyperplasia with CSE was accompanied by the augmentation of the impaired cyclic GMP production, enhanced overall arginase activity and up-regulation of arginase-I. Pearson's correlation coefficient analyses revealed the close relationships among the arginase activities in endothelial cells and smooth muscle layer, the intimal/media ratio and cyclic GMP production. These results suggest that the enhanced arginase activity together with facilitated up-regulation of arginase-I with CSE, which was associated with the augmented impairment of NO production, shed a new light on the processes associated with accelerating the intimal hyperplasia in rabbit carotid arteries following CSE.  相似文献   

2.
Protein tyrosine nitration is an important post-translational modification mediated by nitric oxide (NO) associated oxidative stress, occurring in a variety of neurodegenerative diseases. In our previous study, an elevated level of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein was observed in different brain regions of acute methamphetamine (METH) treated rats, indicating the possibility of an enhanced expression of protein nitration that is mediated by excess NO through the DDAH1/ADMA (Asymmetric Dimethylated l-arginine)/NOS (Nitric Oxide Synthase) pathway. In the present study, proteomic methods, including stable isotope labeling with amino acids in cell culture (SILAC) and two dimensional electrophoresis, were used to determine the relationship between protein nitration and METH induced neurotoxicity in acute METH treated rats and PC12 cells. We found that acute METH administration evokes a positive activation of DDAH1/ADMA/NOS pathway and results in an over-production of NO in different brain regions of rat and PC12 cells, whereas the whole signaling could be repressed by DDAH1 inhibitor Nω-(2-methoxyethyl)-arginine (l-257). In addition, enhanced expressions of 3 nitroproteins were identified in rat striatum and increased levels of 27 nitroproteins were observed in PC12 cells. These nitrated proteins are key factors for Cdk5 activation, cytoskeletal structure, ribosomes function, etc. l-257 also displayed significant protective effects against METH-induced protein nitration, apoptosis and cell death. The overall results illustrate that protein nitration plays a significant role in the acute METH induced neurotoxicity via the activation of DDAH1/ADMA/NOS pathway.  相似文献   

3.
Several reports link cigarette smoking with leukemia. However, the effects of cigarette smoke extract (CSE) on bone marrow hematopoiesis remain unknown. The objective of this study was to elucidate the direct effects of cigarette smoke on human bone marrow hematopoiesis and characterize the inflammatory process known to result from cigarette smoking. Bone marrow mononuclear cells (BMCs) from healthy individuals when exposed to CSE had significantly diminished CFU-E, BFU-E and CFU-GM. We found increased nuclear translocation of the NF-κB p65 subunit and, independently, enhanced activation of AKT and ERK1/2. Exposure of BMCs to CSE induced IL-8 and TGF-β1 production, which was dependent on NF-κB and ERK1/2, but not on AKT. CSE treatment had no effect on the release of TNF-α, IL-10, or VEGF. Finally, CSE also had a significant induction of TLR2, TLR3 and TLR4, out of which, the up-regulation of TLR2 and TLR3 was found to be dependent on ERK1/2 and NF-κB activation, but not AKT. These results indicate that CSE profoundly inhibits the growth of erythroid and granulocyte-macrophage progenitors in the bone marrow. Further, CSE modulates NF-κB- and ERK1/2-dependent responses, suggesting that cigarette smoking may impair bone marrow hematopoiesis in vivo as well as induce inflammation, two processes that proceed malignant transformation.  相似文献   

4.
5.
Chronic bronchitis, a disease mainly of cigarette smokers, shares many clinical features with cystic fibrosis, a disease of altered ion transport, suggesting that the negative effects of cigarette smoke on mucociliary clearance may be mediated through alterations in ion transport. We tested the hypothesis that cigarette smoke extract would inhibit chloride secretion in human bronchial epithelial cells. In agreement with studies in canine trachea, cigarette smoke extract inhibited net chloride secretion without affecting sodium transport. We performed microelectrode impalements and impedance analysis studies to investigate the physiological mechanisms of this inhibition. These data demonstrated that cigarette smoke extract caused an acute increase in membrane resistances in conjunction with apical membrane hyperpolarization, an effect consistent with inhibition of an apical membrane anion conductance. After this acute phase, both membrane resistances decreased while membrane potentials continued to hyperpolarize, indicating that cigarette smoke extract also inhibited the basolateral entry of chloride into the cell. Furthermore, cigarette smoke extract caused an increase in mucin secretion. Therefore, the ion transport phenotype of human bronchial epithelial cells exposed to cigarette smoke extract is similar to that of cystic fibrosis epithelia in which there is sodium absorption out of proportion to chloride secretion in the setting of increased mucus secretion.  相似文献   

6.
Septic shock is characterized by hypotension and a hyporeactive response to vasopressor agents. The pathogenesis is due to vascular leaks and an increased synthesis of cytokines and nitric oxide (NO). The present study examined the time-dependent alterations of endothelin-1 (ET-1) and the expression of NO synthase (NOS) in lung tissue in a septic rat model. Normal Sprague-Dawley (SD) rats aged 10 weeks received 15 mg/kg lipopolysaccharide (LPS) and then were sacrificed at different time points (1, 3, 6, and 10 hrs). Rats that did not receive LPS were considered to be controls. Both systolic and diastolic pressure decreased in SD rats after LPS administration. Time-dependent onset of features of acute lung injury, such as the infiltration of inflammatory cells and thickening of alveolar septa, were seen in rats that received LPS. A 2.8-fold increase in the expression of preproET-1 level was observed in lung tissue 6 hrs after LPS administration. The expression of endothelial NOS (eNOS) was also altered in lung tissue in a time-dependent fashion. After the administration of LPS, there was a 16-fold increase in the expression of eNOS mRNA. The peak expression of inducible NOS (iNOS) in lung tissue specimens obtained from rats that received LPS was 45-fold higher than that in control rats. ET-1 is a potent vasoconstrictor and thereby may play an important role in the pathogenesis of acute lung injury in a septic rat model. The increased expression of NOS may result in excess NO production and may also play a role in the pulmonary complications of endotoxemia.  相似文献   

7.
Immunochemical and electron microscopic characterization of rat myocardium was conducted 2 h and 3 weeks after a single injection of isoproterenol in rats. The relative content of several myospecific proteins (KRP – kinase-related protein, desmin), cytoskeletal proteins (tubulin, vinculin, myosin light chain kinase – MLCK) and extracellular matrix protein fibronectin was determined by immunoblotting. Two hours after injection of 50 mg/kg isoproterenol a destruction of some cardiomyocytes, contracture of myofibrils and mild edema of intercellular space was observed. The content of all the studied proteins except KRP decreased below control levels. This situation sustained 3 weeks after injection and paralleled alterations in cardiomyocyte ultrastructure. Areas of myofibrillar contracture and lysis were noted, glycogen granules were sparse; mitochondria contained arrow-like inclusions that are characteristic for calcium overload, also huge mitochondria contacting each other by specialized intermitochondrial contacts were detected. Clumps of unripe elastic fibers in enlarged intercellular space were combined with increased deposition of collagens type I and III forming areas of fibrosis. The smaller dosage of isoproterenol (10 mg/kg) rendered no significant damage in the acute postinjection period but 3 weeks later it induced the thickening of extracellular matrix around cardiac cells and the increase in KRP and tubulin content by 26 and 32%, correspondingly. MLCK levels remained depressed throughout the experiment. The rise in KRP expression was also observed after the addition of isoproterenol to cultured chicken embryo cardiomyocytes. Obtained results indicate that even a single injection of isoproterenol creates long lasting structural alterations in cardiac muscle accompanied by the increased expression of extracellular matrix proteins and several sarcoplasmic proteins apparently involved in hypertrophic response of cardiomyocytes.  相似文献   

8.
Regional changes in ventilation and perfusion occurring in the early hours after smoke inhalation injury were evaluated through the use of positron emission tomography. Five lambs were imaged before and 1, 2, and 4 h after receiving 100 breaths of cotton smoke. Utilizing a recently developed model of (13)N tracer kinetics (3), we evaluated changes in ventilation, perfusion, shunt, and regional gas content in nondependent, middle, and dependent lung zones. The data demonstrated a progressive development of regional shunt in dependent (dorsal) regions in which perfusion remained the highest throughout the study. These findings, together with decreasing regional ventilation and fractional gas content in the dependent regions, correlated with decreasing arterial Pa(O(2)) values over the course of the study. A negative correlation between regional shunt fraction and regional gas content in dependent and middle regions suggests that shunt was caused by progressive alveolar derecruitment or flooding.  相似文献   

9.
The toll-like receptors (TLRs) are a key component of host defense in the respiratory epithelium. Cigarette smoking is associated with increased susceptibility to infection, while COPD is characterised by bacterial colonisation and infective exacerbations. We found reduced TLR4 gene expression in the nasal epithelium of smokers compared with non-smoking controls, while TLR2 expression was unchanged. Severe COPD was associated with reduced TLR4 expression compared to less severe disease, with good correlation between nasal and tracheal expression. We went on to examine the effect of potential modulators of TLR4 expression in respiratory epithelium pertinent to airways disease. Using an airway epithelial cell line, we found a dose-dependent downregulation in TLR4 mRNA and protein expression by stimulation with cigarette smoke extracts. Treatment with the corticosteroids fluticasone and dexamethasone resulted in a dose-dependent reduction in TLR4 mRNA and protein. The functional significance of this effect was demonstrated by impaired IL-8 and HBD2 induction in response to LPS. Stimulation with salmeterol (10-6 M) caused upregulation of TLR4 membrane protein presentation with no upregulation of mRNA, suggesting a post-translational effect. The effect of dexamethasone and salmeterol in combination was additive, with downregulation of TLR4 gene expression, and no change in membrane receptor expression. Modulation of TLR4 in respiratory epithelium may have important implications for airway inflammation and infection in response to inhaled pathogens.  相似文献   

10.
11.
Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631mg/m(3) of total particulate matter. Exposure started within 12h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were measured by (32)P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.  相似文献   

12.
13.
A chance observation that cigarette smoke interferes with the aromatase assay led us to investigate tobacco leaf and smoke extracts for the presence of aromatase inhibitors. The highest inhibitory activity was found in the basic fraction of cigarette smoke. Further purification of this fraction led to the identification of N-n-octanoylnornicotine. Synthesis and testing of a series of acylated nornicotines and anabasines for their ability to inhibit aromatase showed an interesting correlation of activity with the length of the acyl carbon chain, with maximum activity at C-11. The acylated derivatives showed activity which was significantly greater than that of nicotine and anabasine. In vivo studies in rats indicated that administration of this inhibitor delayed the onset of NMU-induced breast carcinoma and altered the estrus cycle. These in vivo studies suggest that tobacco alkaloid derivatives exert their effects by suppression of the aromatase enzyme system. Toxicity studies indicated relatively low toxicity with LD50 for N-n-octanoylnornicotine = 367 mg/kg body weight. When extracts from thirty five varieties of vegetables, plant leaves, and fruits were analyzed, seventeen showed quantitatively significant aromatase inhibition which was comparable to that of green tobacco leaf, suggesting that naturally occurring substances may affect endocrine function through aromatase inhibition.  相似文献   

14.
Cigarette smoking is a risk factor for atherosclerosis. It is conceivable that reactive chemical components in cigarette smoke may adversely affect reverse cholesterol transport at the level of lecithin:cholesterol acyltransferase (LCAT) and promote atherogenesis. Hence, the effect of cigarette smoke extract (CSE) on the activity of LCAT in human plasma was studied. When incubated with plasma, CSE caused both concentration- and time-dependent losses of LCAT activity. Addition of glutathione, but not ascorbate, to plasma prevented loss of LCAT activity caused by CSE. Incubation of plasma with some reactive aldehydes known to be present in cigarette smoke also inhibited LCAT activity. Among five aldehydes tested, acrolein was the strongest inhibitor of LCAT, with complete enzyme inhibition occurring at 1 mM. Acetaldehyde was the weakest inhibitor of LCAT, with 85% enzyme inhibition at 50 mM. Hexanal, formaldehyde, and malondialdehyde completely inhibited LCAT activity at 10, 50, and 50 mM, respectively. When plasma was incubated with 1 mM acrolein in the presence of 2.5 mM glutathione or dihydrolipoic acid, 100 and 57% of LCAT activity, respectively, remained after incubation. This finding suggests that reactive aldehydes may form adducts with certain free sulfhydryl groups functioning in the active site of LCAT to inhibit enzyme activity. It is concluded that reactive aldehydes are at least partially responsible for the reduction in LCAT activity in plasma treated with CSE.  相似文献   

15.
This review compares and contrasts the chemistry of cigarette smoke, wood smoke, and the smoke from plastics and building materials that is inhaled by persons trapped in fires. Cigarette smoke produces cancer, emphysema, and other diseases after a delay of years. Acute exposure to smoke in a fire can produce a loss of lung function and death after a delay of days or weeks. Tobacco smoke and the smoke inhaled in a burning building have some similarities from a chemical viewpoint. For example, both contain high concentrations of CO and other combustion products. In addition, both contain high concentrations of free radicals, and our laboratory has studied these free radicals, largely by electron spin resonance (ESR) methods, for about 15 years. This article reviews what is known about the radicals present in these different types of smokes and soots and tars and summarizes the evidence that suggests these radicals could be involved in cigarette-induced pathology and smoke-inhalation deaths. The combustion of all organic materials produces radicals, but (with the exception of the smoke from perfluoropolymers) the radicals that are detected by ESR methods (and thus the radicals that would reach the lungs) are not those that arise in the combustion process. Rather they arise from chemical reactions that occur in the smoke itself. Thus, a knowledge of the chemistry of the smoke is necessary to understand the nature of the radicals formed. Even materials as similar as cigarettes and wood (cellulose) produce smoke that contains radicals with very different lifetimes and chemical characteristics, and mechanistic rationales for this are discussed. Cigarette tar contains a semiquinone radical that is infinitely stable and can be directly observed by ESR. Aqueous extracts of cigarette tar, which contain this radical, reduce oxygen to superoxide and thus produce both hydrogen peroxide and the hydroxyl radical. These solutions both oxidize alpha-1-proteinase inhibitor (a1PI) and nick DNA. Because of the potential role of radicals in smoke-inhalation injury, we suggest that antioxidant therapy (such as use of an inhaler for persons brought out of a burning building) might prove efficacious.  相似文献   

16.
We measured carboxyhemoglobin (HbCO) and oxyhemoglobin (HbO2) percent saturations and blood gases in four near-term pregnant ewes and their fetuses, during and for 6 hours after 9-12 minutes of smoke inhalation from one high-potency marijuana cigarette (M), a marijuana placebo cigarette (P), and a reference tobacco cigarette (T). Maternal HbCO reached maximum levels at or soon after the exposure (M, 2.8%; P, 3.5%; T, 6.3% above baseline) and fell to baseline values by 6 hours. Fetal HbCO rose slowly reaching a plateau at 3 hours (M, 0.7%; P, 1.1%; T, 2.0% above baseline) which was maintained for at least three additional hours. Reductions in maternal and fetal HbO2 after exposure to marijuana placebo and reference tobacco cigarettes reflected these rises in HbCO. After exposure to marijuana cigarettes, however, fetal HbO2 dropped precipitously by 17% of baseline and showed a prolonged rate of return to presmoking HbO2 levels. Although P exposure caused a greater change in HbCO in the fetus than did M, it had a less-profound effect on fetal oxygenation.  相似文献   

17.
18.
19.
The pathogenesis of pulmonary hypertension in patients with chronic obstructive pulmonary disease is not understood. We have previously shown increased levels of mediators that control vasoconstriction (endothelin-1), vascular cell proliferation (endothelin-1 and vascular endothelial growth factor), and vasodilation (endothelial nitric oxide synthase) in the intrapulmonary arteries of animals exposed to cigarette smoke. To determine whether these mediators could be implicated in the structural remodeling of the arterial vasculature and increased pulmonary arterial pressure caused by chronic cigarette smoke exposure, guinea pigs were exposed to daily cigarette smoke for 6 mo. Pulmonary arterial pressures were measured. Intrapulmonary artery structure was analyzed by morphometry, artery mediator protein expression by immunohistochemistry, and artery mediator gene expression by laser capture microdissection and real-time RT-PCR. We found that the smoke-exposed animals developed increases in pulmonary arterial pressure and increased muscularization of the small pulmonary arteries. Gene expression and protein levels of all three mediators were increased, and pulmonary arterial pressure correlated both with the levels of mediator production and with the degree of arterial muscularization. We conclude that chronic smoke exposure produces increased vasoactive mediator expression in the small intrapulmonary arteries and that these mediators are associated with vascular remodeling as well as increased pulmonary arterial pressure. These findings support the idea that hypertension in chronic obstructive pulmonary disease is a result of direct cigarette smoke-mediated effects on the vasculature and suggest that interference with endothelin and VEGF production and activity or augmentation of nitric oxide levels may be beneficial.  相似文献   

20.
To clarify whether cigarette smoke stimulates the sympathetic nervous system (SNS) and thermogenesis in interscapular brown adipose tissue (IBAT), we measured norepinephrine (NE) turnover, an indicator of SNS activity, guanosine-5'-diphosphate (GDP) binding, a thermogenic indicator, and oxygen consumption in IBAT in monosodium-L-glutamate (MSG)-induced obese and saline control mice following a two-week exposure to cigarette smoke. Cigarette smoke significantly increased NE turnover, GDP binding and oxygen consumption in IBAT, and significantly reduced body weight in MSG obese mice as well as in control mice. However, food intake was unchanged in the MSG group. These results suggest that cigarette smoke stimulates NE turnover and thermogenesis in BAT, which contribute to the mitigation of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号