首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phylogenetic framework is developed for the clubmoss family Selaginellaceae based on maximum parsimony analyses of molecular data. The chloroplast gene rbcL was sequenced for 62 species, which represent nearly 10% of living species diversity in the family. Taxa were chosen to reflect morphological, geographical, and ecological diversity. The analyses provide support for monophyly of subgenera Selaginella and Tetragonostachys. Stachygynandrum and Heterostachys are polyphyletic. Monophyly of Ericetorum is uncertain. Results also indicate a large number of new groupings not previously recognized on morphological grounds. Some of these new groups seem to have corresponding morphological synapomorphies, such as the presence of rhizophores (distinctive root-like structures), aspects of rhizophore development, and leaf and stem morphology. Others share distinctive ecological traits (e.g., xerophytism). For many groups, however, no morphological, ecological, or physiological markers are known. This could reflect patchy sampling and a lack of detailed knowledge about many species. Despite a lengthy fossil record dating from the Carboniferous Period, cladogram topology indicates that most of the living tropical species are probably the products of more recent diversifications. Resurrection plants, extreme xerophytes characterized by aridity-driven inrolling of branches and rapid revival on rehydration, have evolved at least three times in quite different clades.  相似文献   

2.
Phylogenetic relationships within the angiosperm orderCampanulales were investigated by comparative sequencing of the chloroplast generbcL. CompleterbcL sequences were obtained for ten species in six families within the order. These data were analyzed along with previously publishedrbcL sequences from other taxa (for a total of 117 species) within the subclassAsteridae and outgroups, producing 32 equally parsimonious trees. A subset consisting of 44 of these taxa was then chosen and more rigorous analyses performed, resulting in four equally parsimonious trees. Results indicate that two major clades roughly corresponding to traditionally circumscribedAsterales andCampanulales exist as sister taxa. In particular, therbcL trees indicate thatSphenoclea is not a member ofCampanulales orAsterales, thatPentaphragma is more closely allied toAsterales thanCampanulales, that theCyphiaceae are not monophyletic, thatCampanulaceae andLobeliaceae are not sister taxa, and thatStylidiaceae are correctly placed withinCampanulales.  相似文献   

3.
对分布于青海境内的中国沙棘、肋果沙棘和西藏沙棘的ITS区进行扩增和序列分析,并以胡颓子科胡颓子属沙枣为外类群,对胡颓子科沙棘属15种植物的ITS序列进行聚类分析, 探讨沙棘属各植物的亲缘关系.结果表明: 3种沙棘属植物的ITS区长度为600~605 bp,其中,ITS-1区为201~203 bp,5.8S为166~167 bp,ITS-2区为232~236 bp.核苷酸分析显示,3种沙棘属植物的ITS区存在丰富的变异位点.聚类分析表明,棱果沙棘种的2个亚种——棱果沙棘和理塘沙棘为2个不同种,江孜沙棘与柳叶沙棘之间的亲缘关系较近,而与中国沙棘亲缘关系较远;沙棘种下9个亚种间的聚类结果与形态学分类差异较大.
  相似文献   

4.
Phylogenetic relationships were determined in the Araucariaceae, which are now found mainly in the Southern Hemisphere. This conifer family was well diversified and widely distributed in both hemispheres during the Mesozoic era. The sequence of 1322 bases of the rbcL gene of cpDNA was determined from 29 species of Araucariaceae, representing almost all the species of the family. Phylogenetic trees determined by the parsimony method indicate that Araucariaceae are well defined by rbcL sequences and also that the monophyly of Agathis or Araucaria is well supported by high bootstrap values. The topology of these trees revealed that Wollemia had derived prior to Agathis and Araucaria. The rbcL phylogeny agrees well with the present recognition of four sections within Araucaria: Araucaria, Bunya, Eutacta, and Intermedia. Morphological characteristics of the number of cotyledons, position of male cone, and cuticular micromorphologies were evaluated as being phylogenetically informative. Section Bunya was found to be derived rather than to be the oldest taxon. Infrageneric relationships of Agathis could not be well elucidated because there are few informative site changes in the rbcL gene, suggesting the more recent differentiation of the species as their fossil records indicate. The New Caledonian Araucaria and Agathis species each formed a monophyletic group with very low differentiation in rbcL sequences among them, indicating rapid adaptive radiation to new edaphic conditions, i.e., ultramafic soils, in the post-Eocene era.  相似文献   

5.
Partial nucleotide sequences of the citrate synthase (gltA) gene from different rhizobia genera were determined. Tree topologies based on this housekeeping gene were similar to that obtained using 16S rRNA sequences. However gltA appeared to be more reliable at determining phylogenetic relationships of closely related taxa. We propose gltA sequences as an additional tool to be used in molecular phylogenetic studies.  相似文献   

6.
We used a 694 bp length of the mitochondrial ND4 gene from 40 genera to infer phylogenetic relationships among colubroid snakes. The goals of this study were to identify conserved subsets of ND4 sequence data that could be used to address (1) which nominal higher-level colubroid taxa are monophyletic, and (2) the relationships among the monophyletic lineages identified. Use of transversions only proved the most reliable and efficient means of retrieving colubroid relationships. Transversion parsimony and neighbour-joining analyses identify similar monophyletic higher-level taxa, but relationships among these lineages differ considerably between the two analyses. These differences were affected by the inclusion/exclusion of (1) transitions, (2) autapomorphies, and (3) the boid outgroups. Saturation effects among the transitions, uninformativeness of autapomorphies for clustering taxa, and long-branch and base-compositional problems among the boids lead us to regard the tree resulting from transversion parsimony analysis rooted with Acrochordus as the best current estimate of colubroid phylogenetic relationships. However, several aspects of this proposed phylogeny need further testing (e.g. the apparent diphyly of Natricinae is especially controversial). Relationships retrieved using all colubroid taxa are not obtained when sparsely or unevenly sampled experimental subsets of taxa are used instead, suggesting that long-branch problems can severely compromise elucidation of colubroid relationships if limited taxonomic sampling strategies are followed. We discuss the importance of this finding for previous molecular attempts to assess colubroid relationships. Our analyses confirm the historical validity of several nominal colubroid families and subfamilies, establish polyphyly of a few, but generally fail to resolve relationships among the monophyletic taxa we identify. More conservative character information will be required to confidently resolve the last issue.  相似文献   

7.
Phylogenetic relationships of 34 passerines were studied based on mitochondrial Cytochrome b (Cyt b) sequences. Phylogenetic trees were constructed using Neighbor-Joining, Maximum-Parsimony and Minimum evolution methods. The results show that the divergence between Fringillids and Emberizids reaches a family level and they should be grouped into family Fringillidae and Emberizidae, respectively; Accentors has a relatively close relationship with Fringillids and Emberizids; the divergence between robins and flycatchers does not reach a family level and they should be member to family Muscicapidae; long-tailed tits and sylviids should all be listed into families; barn swallow, crowtits and long-tailed tits have close relationships with Sylviidae; in the Fringillidae, brambling should be member to one subfamily Fringillinae, several other birds under the subfamily Carduelinae; in the Sylviidae, although lanceolated warblers and scaly-headed stubtails have a relatively far relationship, they should be member to one subfamily Acrocephalinae and warblers to Phylloscopinae. Muscicapidae, Fringillidae and Emberidae are all monophylies, but Sylviidae is not. The substitution rates of major clades are thought to be the same according to relative rate tests. Divergence time of major clades is estimated at the rate of 1.6% per million years, thus the estimated divergence time between Fringillidae and Emberizidae is 10.5 million years, robins and flycatchers 9.0 Myr, Acrocephalinae and Phylloscopinae 9.0 Myr, Carduelis flammea and Carpodacus erythrinus 7.5 Myr, Luscinia cyane and Tarsiger cyanurus 7.8 Myr, two outgroups 13.5 Myr.  相似文献   

8.
从叶绿体DNA trnL-F序列论双参属的归属问题   总被引:13,自引:0,他引:13  
双参属Triplostegia Wall.ex DC.由分布于东南亚地区的2个种组成,为多年生草本植物。它的归属一直存在争议,有时置于川续断科Dipsacaceae或败酱科Valerianaceae,有时单立一科,即双参科Triplostegiaceae。本研究对广义川续断目Dipsacales s.l.的21种植物(分别来自于败酱科、川续断科、双参属、刺参属Morina、广义忍冬科Caprifoliaceae s. l.、五福花科 Adoxaceae)和外类群人参Panax schin-seng Nees.的叶绿体 DNA trnL-F区进行了测序,并建立系统发育树状图。结果显示,败酱科、川续断科、双参属、刺参属和广义忍冬科的4个属(双盾木属Dipelta、虫胃实属Kolkwitzia、六道木属Abelia和北极花属Linnaea)形成 了一个单系群并得到了很强的支持(100% bootstrap);双参属与川续断科有更近的关系,建议作为一个亚科置于川续断科;广义忍冬科为一多系类群;而刺参属与其他广义川续断目类群之间的关系尚不能确定。  相似文献   

9.
Published molecular phylogenetic studies of elapid snakes agree that the marine and Australo-Melanesian forms are collectively monophyletic. Recent studies, however, disagree on the relationships of the African, American, and Asian forms. To resolve the relationships of the African, American, and Asian species to each other and to the marine/Australo-Melanesian clade, we sequenced the entire cytochrome b gene for 28 elapids; 2 additional elapid sequences from GenBank were also included. This sample includes all African, American, and Asian genera (except for the rare African Pseudohaje), as well as a representative sample of marine/Australo-Melanesian genera. The data were analyzed by the methods of maximum-parsimony and maximum-likelihood. Both types of analyses yielded similar trees, from which the following conclusions can be drawn: (1) Homoroselaps falls outside a clade formed by the remaining elapids; (2) the remaining elapids are divisible into two broad sister clades, the marine/Australo-Melanesian species vs the African, American, and Asian species; (3) American coral snakes cluster with Asian coral snakes; and (4) the "true" cobra genus Naja is probably not monophyletic as the result of excluding such genera as Boulengerina and Paranaja.  相似文献   

10.
The phylogenetie relationships of Triplostegia Wall. ex DC., comprising two species of perennial herbs from southeastern Asia, have long been in dispute. This genus was placed in either Dipsacaceae or Valerianaceae or in a family of its own, Triplostegiaceae. In this paper, the chloroplast DNA (cpDNA) trn L-F regions of 21 species in the Dipsacales s. l. (including Valerianaceae, Dipsacaceae, Triplostegia, Morina, Caprifoliaceae s. l. and Adoxaceae) and an outgroup Panax schin-seng Nees. were amplified and sequenced. The phylogenetic relationships among these 22 species were constructed based on trn L-F sequences. The results demonstrated that Valerianaceae, Dipsacaceae, Triplostegia, Morina and four genera from the Caprifoliaceae s. l. form a monophyletic group with a strong support (100% bootstrap). Triplostegia, a sister group to Dipsacaceae, is close enough to be placed in the Dipsacaceae as a subfamily. The traditional Caprifoliaceae s.l. are polyphyletic, and relationships of Morina among the groups within Dipsacales s. l. are uncertain. Key words Triplostegia; Caprifoliaceae s. l.; Morina; Dipsacales s. l.; trnL-F sequences; Sys-tematic position  相似文献   

11.
We used nucleotide sequences from the internal transcribed spacers and 5.8S gene of nuclear ribosomal DNA to test competing phylogenetic and biogeographic hypotheses in Gleditsia. Eleven of 13 Gleditsia species were sampled, along with two species of its sister genus, Gymnocladus. Analyses of ITS data and of a combined data set that included sequences of ITS and two chloroplast genes supported several conclusions that were interpreted in light of fossil data and current legume phylogeny. Gleditsia and Gymnocladus appear to have originated in eastern Asia during the Eocene. Eastern North American species of both genera most likely evolved from ancestors that migrated across the Bering land bridge, but the eastern Asian/eastern North American disjunction appears to be much older in Gymnocladus than in Gleditsia. Gleditsia amorphoides, from temperate South America, is sister to the rest of the genus, suggesting early long-distance dispersal from Asia. The remainder of Gleditsia is divided into three unresolved clades, possibly indicating a split early in the evolution of the genus. Two of those clades contain only Asian species, and one contains Asian and North American species. The North American species, Gleditsia triacanthos and Gleditsia aquatica, are polymorphic and paraphyletic with respect to their ITS and cpDNA sequences, which suggests recent diversification.  相似文献   

12.
Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.  相似文献   

13.
基于 rDNA ITS 1序列探讨臂尾轮属轮虫的系统发生关系   总被引:3,自引:0,他引:3  
项贤领  席贻龙  胡好远 《动物学报》2006,52(6):1067-1074
本文通过对剪形臂尾轮虫、矩形臂尾轮虫、十指臂尾轮虫、红臂尾轮虫、角突臂尾轮虫、双棘臂尾轮虫、裂足臂尾轮虫和萼花臂尾轮虫等八种臂尾轮虫rDNAITS 1序列分析,并以西氏晶囊轮虫为外群,使用PAUP和贝叶斯软件分别构建臂尾轮属轮虫系统发生树( MP树、NJ树、ML树和贝叶斯树) ,以探讨臂尾轮属的系统发生关系,并解决其中的一些分类问题。结果表明:本研究所涉及的轮虫rDNAITS 1平均序列差异百分比较高,为29 %;海水和淡水臂尾轮虫被明显分为不同的进化枝;除双棘臂尾轮虫外,在淡水臂尾轮虫中具有三对前棘刺且营附着生活的种类与前棘刺少于三对且营浮游生活的种类聚在不同支系中,这与以形态特征为主所进行的系统发生研究结果基本一致;所有的系统树均支持将十指臂尾轮虫作为一个独立的支系分离出来,裂足臂尾轮虫应归入臂尾轮属。  相似文献   

14.
Phylogenetic relationships of 36 nymphophiline species representing 10 genera were inferred from mtCOI sequence data and compared to recent morphology-based classifications of this group. Parsimony and maximum likelihood analyses of the molecular data set suggested monophyly of the North American nymphophilines and a sister or otherwise close relationship between this fauna and a European species assigned to the subfamily. Results also supported a previously hypothesized close relationship between the predominantly freshwater nymphophilines and the brackish-water genus Hydrobia . Our analyses resolved a North American nymphophiline subclade composed of Floridobia , Nymphophilus , and Pyrgulopsis , and depicted the remaining North American genera ( Cincinnatia , Marstonia , Notogillia , Rhapinema , Spilochlamys , Stiobia ) as either a monophyletic or paraphyletic group. Two of the large North American genera ( Floridobia , Marstonia ) were supported as monophyletic groups while monophyly of Pyrgulopsis , a western North American group containing > 100 species, was equivocal. North American nymphophiline phylogeny implies that vicariance of eastern and western North American groups was followed by a secondary invasion of eastern coastal areas from the west. We attribute this to dispersal of salt-tolerant progenitors along the Gulf of Mexico coast  相似文献   

15.
Analysis of the nucleotide sequence of the mitochondrial 12S ribosomal RNA gene of 27 species or sub-species of bitterlings showed that bitterlings comprise an Acheilognathus clade and a Tanakia-Rhodeus clade, partially supporting an earlier classification based on morphology and karyology. The monophyly of Acheilognathus is confirmed, but that of Tanakia and Rhodeus remains poorly resolved. Within the Tanakia–Rhodeus clade, all species or sub-species having a diploid chromosome number of 46 form a monophyletic group. Results support the hypothesis that evolutionary trends of bitterling karyotypes involve reduction from 2 n =48 to either 2 n =44 (by Robertsonian translocation) or 2 n =46 (by non-Robertsonian translocation).  相似文献   

16.
17.

Background  

Phylogenetic relationships of the genus Hapalemur remains controversial, particularly within the Hapalemur griseus species group. In order to obtain more information on the taxonomic status within this genus, and particularly in the cytogenetic distinct subspecies group of Hapalemur griseus, 357 bp sequence of cytochrome b and 438 bp of 12S mitochondrial DNAs were analyzed on a sample of animals captured in areas extending from the north to the south-east of Madagascar. This sample covers all cytogenetically defined types recognized of the genus Hapalemur.  相似文献   

18.
Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects.  相似文献   

19.
Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 5' end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets.  相似文献   

20.
A setiform dematiaceous hyphomycete,Kionochaeta spissa was newly collected and isolated from evergreen broad-leaved forests in the southern parts of Japan. Except for its dematiaceous nature, the species is morphologically similar to a nectriaceous hyphomycete,Chaetopsina fulva. The morphology and cultural properties of the Japanese isolates ofK. spissa were described, and the phylogenetic relationships betweenChaetopsina (C. fulva (type species)) andKionochaeta (K. ramifera (type species),K. spissa andK. ivoriensis) were inferred based on nuclear encoded small subunit (18S) rDNA sequences using the neighbor-joining method.Chaetopsina andKionochaeta were found to be phylogenetically related to the Hypocreales and Sordariales, respectively. Both should be maintained as separate genus for phylogenetic classification. The morphological resemblance especially betweenC. fulva andK. spissa is an example of the convergent evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号