首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》2007,86(1):62-68
This glasshouse study examined the effect of three damage types on plant growth and nutrient allocation of the invasive aquatic plant, alligator weed (Alternanthera philoxeroides). The damage included: repeated leaf removal, a single application of herbicide, and one-time shoot removal. Damage types were meant to simulate the effects of insect herbivory, chemical, and mowing/grazing, respectively. Response variables included plant biomass and both the concentration and abundance of nutrients. Complete shoot removal and herbicide treatments caused an initial decline in growth rate, followed by several weeks of increasing rates and finally a second decline during the fourth week. Plants from control and repeated leaf removal treatments showed a steady increase in growth rate from the treatment application to the final harvest, but control plants were accumulating biomass three times faster than repeated defoliation plants by the fifth week (9.7 and 3.5 g week−1, respectively). Not surprisingly, all treatments led to lower total cumulative biomass 5 weeks after treatment application (mean 30.8 g) when compared with controls (49.0 g). However, despite the repeated leaf removal and complete shoot removal treatments removing similar quantities of biomass (mean 8.0 and 7.5 g respectively), repeated removal of leaves produced less total biomass (26.2 g) and led to less cumulative above ground biomass (20.1 g) than the other treatments (mean total = 33.1 g, mean above ground = 25.7 g). Repeated leaf removal also produced less below ground biomass (6.1 g) than the shoot removal treatment (8.5 g) and had the greatest negative effect on nitrogen and potassium abundance in plant tissues after 5 weeks. In addition, it reduced the amount of phosphorous to a lower level than herbicide treated or control plants. These results indicate that repeated leaf removal was the treatment most effective in reducing biomass and depleting nutrients in A. philoxeroides plants.  相似文献   

2.
《Acta Oecologica》2007,31(2):168-173
The Digital Climatic Atlas and the Ecological and the Forestry Inventory of Catalonia (NE Spain) were analysed to study the climate effect on leaf mass per area (LMA) and leaf area index (LAI) on Quercus ilex L., one of the most widely spread tree species in the Mediterranean region. 195 sites in this region of 31,895 km2 were considered. The relationship between climatic variables (total annual rainfall, mean annual temperature, mean minimum winter temperatures, and mean annual solar radiation) and LMA and LAI were analysed by simple and multiple regressions. LMA was higher in the drier sites and specially in the colder sites. There was also a significant correlation between solar radiation and LMA. On the contrary, LAI values, which were negatively correlated with LMA values, were lower in drier and colder sites, and were not significantly affected by solar radiation. The results highlight that high LMA values do not seem to be a specific protection to dry conditions but to a wide range of environmental stress factors, including low temperatures.  相似文献   

3.
The African baobab (Adansonia digitata L.) is an important multi-purpose fruit tree with high potential for domestication in drier Africa. Although adult individuals are well-known to be drought resistant, only little has been reported on how young baobab trees can survive drought. Therefore, the aim of this study was to examine short-term soil drought effects on water relations of baobab seedlings. Baobab seedlings used a limited amount of stored water to buffer daily water deficits (~ 8.5 g d 1), which contributed up to only ~ 17.5% of daily water use and ~ 6% of total plant water. Under drought, a strong reduction in stomatal conductance (~ 85%) resulted in a midday leaf water potential of − 1 MPa and zero stem sap flow followed by significant leaf loss. Plant anatomy evidenced the presence of water storage tissues and the vulnerability to xylem embolism. The taproot was the most important plant part for water storage (68% of total plant water), suggesting root-succulence rather than stem-succulence. When drought intensified, limitation of leaf transpiration and/or root water uptake led to drought-enforced dormancy. Despite the large amounts of water stored in the taproot (~ 90%) and the stem (~ 75%), only a limited amount of stored water appeared to be used to sustain upper leaves and plant metabolism during the dormant period, and to facilitate recovery following water supply. Drought avoidance, conservative water use and the presence of internal stored water allow baobab seedlings to survive drought.  相似文献   

4.
Different plant species make use of resource gradients such as light in different ways. First, plant species specialize in using different parts of the gradient, resulting in niche partitioning, Second, within the section of the gradient used by a species, plants respond to a different resource supply by plasticity. Our study addressed both of these strategies, with the main objective to relate mean responses and plasticity indices of seedlings of woody species to species characteristics such as leaf habit and to variation in branch lengths and local frequency of adult trees in forest communities.A greenhouse experiment with 36 deciduous and 35 evergreen subtropical tree and shrub species was carried out to test the influence of light and nutrient availability on trait expression and plasticity of the species. The greenhouse responses of seedlings were compared with adult individuals in the field, based on a set of 46 species that occurred also in the 27 permanent plots in a secondary subtropical broadleaved forest in Zhejiang Province (SE-China).In the greenhouse experiment, most variables showed significant differences between unshaded (250 μE m−2 s−1) and shaded (10 μE m−2 s−1) treatments as well as between high and low nutrient supply. Deciduous species were more plastic than evergreen species in their response to light. No significant correlations were detected in mean responses and plasticity between juvenile plants in the greenhouse and adult trees in the field. However, some trait values such as biomass and node density as well as plasticity of several traits were positively related to the species’ abundance in the field, suggesting that locally abundant species tend to be less “plastic” than locally rare species.  相似文献   

5.
Exposing plants to long-term CO2 enrichment generally leads to increases in plant biomass, total leaf area and alterations on leaf net photosynthetic rates, stomatal conductance and water use efficiency. However, the magnitude of such effects is dependent on the availability of other potentially limiting resources. The aim of our study was to elucidate the effects of elevated CO2, applied at different temperature and water availability regimes, on nodulated alfalfa plants. Regardless of water supply, elevated CO2 enhanced plant growth, especially when combined with increased temperature although no differences were detected until 30 days of treatment. Absence of differences in leaf relative growth rate, and gas exchange measurements, suggested that plants grown in a low water regime adjusted their growth to the amount of available water. Elevated CO2 enhanced water use efficiency because of reduced water consumption and a greater dry mass production. Increased dry matter production of plants grown under elevated CO2 and temperature was the result of stimulated photosynthetic rates, greater leaf area and water use efficiency. Lack of CO2 effect on photosynthesis of plants grown at ambient temperature might be consequence of down-regulation phenomena. Plants grown at 700 μmol mol−1 CO2 maintained control nitrogen levels, discarding enhanced nitrogen availability as the main factor explaining enhanced dry matter.  相似文献   

6.
《Ecological Indicators》2007,7(3):521-540
Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical–chemical parameters, were sampled from 70 small (average 0.86 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to (1) compare diatom assemblage structure between algal types; (2) develop biological indicators of wetland condition; (3) examine synecological relationships between diatom structure and environmental variables, with the ultimate goal of developing an index of biological integrity using a single assemblage. Collected diatom samples were enumerated to 250 valves and identified to species or subspecies. An assessment of wetland condition was made using a landscape-scale human disturbance score (Landscape Development Intensity index, LDI), calculated for each site using land use maps and GIS.Assemblages from both impaired and reference sites were compared using blocked multi-response permutation procedures, the percent similarity index, and visually examined using non-metric multidimensional scaling (NMDS). No ecologically significant compositional differences were found within sites. Mantel's test (Mantel's r = 0.29, p < 0.0001) and NMDS (stress: 14.52, variance: 78.5%) identified epiphytic diatoms as the most responsive to human disturbance. Strong significant correlations (|rs| > 0.50, p < 0.05) were found between epiphytic NMDS site scores and soil pH, specific conductivity, water total phosphorous, and LDI, while soil pH, water color, soil TP, and turbidity were also significantly correlated (p < 0.05).Metrics to assess wetland condition were developed using epiphytic abundance data. Epiphytic taxa sensitive or tolerant to human landscape modification were identified using Indicator Species Analysis, and autecological indices relating diatom sensitivity to nutrients, pH, dissolved oxygen levels, saprobity, salinity, and trophic status were calculated. Fourteen final metrics were identified, scored on an ordinal scale, and combined into the Diatom Index of Wetland Condition (DIWC). The DIWC was highly correlated with the disturbance score (Spearman's rs = −0.71, p < 0.0001), although the results need to be validated.  相似文献   

7.
Plants growing in infertile environments are able to produce more biomass per unit of nutrient taken up than plants of fertile habitats, and also to minimize nutrients loss by resorbing them from senescing leaves. The leaf nutrient concentration variability of two co-existing riparian tree genera (Populus and Tamarix) along a flood inundation gradient was examined to infer nutrient limitation and to compare nutrient use strategies in the two genera. To that end, seasonal and spatial variability in leaf nitrogen (N) and phosphorus (P) concentration (i.e., % dry mass of N and P) were analyzed in 720 samples of leaves (2 tree genera × 3 seasons × 12 sites × 10 tree replicates). Both Populus and Tamarix showed strong seasonal variability in leaf N and P concentrations, with values decreasing throughout the growing season. However, while N:P atomic ratio remained seasonally constant in Populus (N:P = 33), Tamarix shifted from N:P = 29 in spring to N:P = 36 and 37 in summer and fall. %N, %P and N:P atomic ratios were also spatially variable, but leaf litter N and P concentration (i.e., nutrient resorption proficiency) and leaf litter N:P generally followed the local flood inundation gradient as shown by linear mixed effects models. In particular, nutrient resorption was usually less proficient (higher terminal nutrient concentrations) at higher flood durations (in gravel bars and natural levees), whereas N:P increased in the drier sites (floodplain terrace). At floodplain level, a P-limitation that is higher than N-limitation seems to characterize the plant nutrient circulation in the riparian ecosystem studied. Tamarix was slightly more proficient in P resorption than Populus. The study shows that leaf nutrient concentration (e.g., N and P) derived from nutrient availability is partly controlled by the flood inundation regime and can be used as an indicator of nutrient limitation in forested floodplains. Subtle differences between tree genera provide an additional, novel explanation for the recent expansion of Tamarix in many arid and semi-arid rivers with altered hydrogeomorphic regimes.  相似文献   

8.
Leaf water status information is highly needed for monitoring plant physiological processes and assessing drought stress. Retrieval of leaf water status based on hyperspectral indices has been shown to be easy and rapid. However, a universal index that is applicable to various plants remains a considerable challenge, primarily due to the limited range of field-measured datasets. In this study, a leaf dehydration experiment was designed to obtain a relatively comprehensive dataset with ranges that are difficult to obtain in field measurements. The relative water content (RWC) and equivalent water thickness (EWT) were chosen as the surrogates of leaf water status. Moreover, five common types of hyperspectral indices including: single reflectance (R), wavelength difference (D), simple ratio (SR), normalized ratio (ND) and double difference (DDn) were applied to determine the best indices. The results indicate that values of original reflectance, reflectance difference and reflectance sensitivity increased significantly, particularly within the 350–700 nm and 1300–2500 nm domains, with a decrease in leaf water. The identified best indices for RWC and EWT, when all the species were considered together, were the first derivative reflectance based ND type index of dND (1415, 1530) and SR type index of dSR (1530, 1895), with R2 values of 0.95 (p < 0.001) and 0.97 (p < 0.001), respectively, better than previously published indices. Even so, different best indices for different species were identified, most probably due to the differences in leaf anatomy and physiological processes during leaf dehydration. Although more plant species and field-measured datasets are still needed in future studies, the recommend indices based on derivative spectra provide a means to monitor drought-induced plant mortality in temperate climate regions.  相似文献   

9.
Forage selection decisions of herbivores are often complex and dynamic; they are modulated by multiple cues, such as quality, accessibility and abundance of forage plants. To advance the understanding of plant–herbivore interactions, we explored foraging behavior of the alpine lagomorph Royle's pika (Ochotona roylei) in Kedarnath Wildlife Sanctuary, India. Pika bite counts on food plants were recorded through focal sampling in three permanently marked plots. Food plant abundance was recorded by traditional quadrat procedures; forage selection was estimated with Jacob's selection index. Multiple food-choice experiments were conducted to determine whether forage selection criteria would change with variation in food plant composition. We also analyzed leaf morphology and nutrient content in both major food plants and abundantly available non-food plants. Linear regression models were used to test competing hypotheses in order to identify factors governing forage selection. Royle's pika fed primarily on 17 plant species and each forage selection decision was positively modulated by leaf area and negatively modulated by contents of avoided substances (neutral detergent fiber, acid detergent fiber, acid detergent lignin and tannin) in food plants. Furthermore, significance of the interaction term “leaf size × avoided substance” indicates that plants with large leaves were selected only when they had low avoided substance content. The forage selection criteria did not differ between field and laboratory experiments. The parameter estimates of best fit models indicate that the influence of leaf size or amount of avoided substance on pika forage selection was modulated by the magnitude of predation risk.  相似文献   

10.
We determined the cold (freezing) tolerance for field-grown plants of Atriplex halimus L. (Chenopodiaceae) in relation to plant ploidy level, leaf water relations and accumulation of osmolytes. Plants were grown at two sites in Murcia (Spain), having average minimum temperatures in the coldest month of 0.6 and 12.1 °C, respectively. LT50 values derived from laboratory freezing tests, using leaves taken from the plants in early winter and in spring, showed greater tolerance for winter-harvested leaves; the acclimation was more pronounced at the cold-winter site. Cold tolerance was related positively with leaf K and/or Na accumulation. Analysis of compatible organic solutes (soluble sugars, total amino acids and quaternary ammonium compounds) showed that cold tolerance (measured both as LT50 and as winter freezing damage in situ) was related most closely with leaf concentrations of soluble sugars. The leaf percentage dry matter content was related to both in vitro and in vivo tolerance, while tolerance in vitro was correlated also with the osmotic (potential ψs) and the relative water content. The two diploid (2n = 2x = 18) populations, from Spain, showed greater cold tolerance than the three tetraploid (2n = 4x = 36) populations, from North Africa and Syria, which may be related to the latter's greater cell size and consequent dilution of osmolytes. In this halophytic species, cold tolerance, like salinity and drought tolerance, seems to depend on osmotic adjustment, driven by vacuolar accumulation of K and Na and cytoplasmic accumulation of compatible solutes.  相似文献   

11.
We determined the cold (freezing) tolerance for field-grown plants of Atriplex halimus L. (Chenopodiaceae) in relation to plant ploidy level, leaf water relations and accumulation of osmolytes. Plants were grown at two sites in Murcia (Spain), having average minimum temperatures in the coldest month of 0.6 and 12.1 °C, respectively. LT50 values derived from laboratory freezing tests, using leaves taken from the plants in early winter and in spring, showed greater tolerance for winter-harvested leaves; the acclimation was more pronounced at the cold-winter site. Cold tolerance was related positively with leaf K and/or Na accumulation. Analysis of compatible organic solutes (soluble sugars, total amino acids and quaternary ammonium compounds) showed that cold tolerance (measured both as LT50 and as winter freezing damage in situ) was related most closely with leaf concentrations of soluble sugars. The leaf percentage dry matter content was related to both in vitro and in vivo tolerance, while tolerance in vitro was correlated also with the osmotic (potential ψs) and the relative water content. The two diploid (2n = 2x = 18) populations, from Spain, showed greater cold tolerance than the three tetraploid (2n = 4x = 36) populations, from North Africa and Syria, which may be related to the latter's greater cell size and consequent dilution of osmolytes. In this halophytic species, cold tolerance, like salinity and drought tolerance, seems to depend on osmotic adjustment, driven by vacuolar accumulation of K and Na and cytoplasmic accumulation of compatible solutes.  相似文献   

12.
《Aquatic Botany》2004,80(3):177-191
Lack of submerged vegetation was studied in a small, shallow, alkaline, clear-water lake with high nitrate concentration (mean 9 mg NO3–N L−1) and profuse filamentous green algae (FGA) (mainly Spirogyra sp.). A laboratory microcosm and two lake enclosure experiments were carried out using Elodea nuttallii (Planchon) St John. E. nuttallii grew about 1.7 times as well in sediment from its place of origin compared with sediment from the lake. Differential water quality had no effect, and neither sediment nor water prevented growth in the lake. Nutrient addition reduced plant growth by more than 55% because of shading from epiphytic filamentous green algae (shoot dry weight versus epiphytic algal dry weight, r = −0.491, P < 0.05). Transplanted Elodea plants grew better in enclosures in the lake than in laboratory conditions with lake water and sediment (P < 0.001, t-test). Rare Elodea individuals in the lake indicate the presence of plant propagules in the lake sediment, but excessive growth of filamentous green algae (summer mean 3.2 g dry weight m−2) significantly hamperd plant growth (shoot length reduced from 29 ± S.E.M. 1 to 25 ± 1 cm) and bird herbivory significantly reduced survival (from 82 ± 7 to 40 ± 6%) and shoot growth (from 78 ± 6 to 18 ± 5 cm) and thus eliminates establishment of even modest plant beds. Fish disturbance and sediment stability were not important. Restoration of submerged plants may require reduction of nitrate input, control of filamentous green algae and protection from birds.  相似文献   

13.
This experiment was conducted to study the effect of high ozone concentrations on two cotton (Gossypium hirsutum L.) cultivars. Two cotton cultivars (Romanos and Allegria) were exposed to control (CF < 4 ppb O3) and 100 ppb O3. Plant exposure to ozone began eight days after emergence and was interrupted one day before removing the leaves, to calculate the leaf area. Plants were exposed to ozone 7 h/day, in closed and controlled-environment chambers, during their illumination with artificial visible light.In comparison to control plants, plants exposed to O3 showed chlorotic and necrotic patches on their leaves, increased stomatal or epidermal cell density and yellowness of cotton fibers. Elevated ozone concentration did not have a significant effect on stomatal width, total leaf thickness and thickness of histological components of leaves. Exposure to ozone concentration reduced non-glandular hair density of main leaf veins, plant height, mainstem internode length, chlorophyll content, net photosynthetic rate, stomatal conductance and length and area of bracts and petals. Elevated ozone treatment reduced the maximum length of staminal tube, anther number, pollen grain germination, leaf area, leaf dry weight, boll number, raw cotton weight, total branch length, dry weight of the mainstem–branches–bracts–carpophylls and of root dry weight. Furthermore, exposure to O3 reduced the seed weight, the lint weight, the yield, the ratio of lint weight to seed weight, the fiber strength, the micronaire, the maturity index and the fiber uniformity index values. This study shows that the exposure to high ozone concentrations mainly affected the rate of photosynthesis, raw cotton weight and strength of cotton fibers.  相似文献   

14.
The impact of climatic change on crop production is a major global concern. One of the climatic factors, ultraviolet-B radiation (UV-B; 280–320 nm), which is increasing as a result of depletion of the global stratospheric ozone layer, can alter crop productivity. As the initial step in development of UV-B tolerant rice cultivars for the southern U.S., in this study we screened popular southern U.S. rice cultivars for variation in tolerance to elevated UV-B radiation with respect to morphological, phenological and physiological parameters. Plants grown in the greenhouse at the Texas AgriLife Research and Extension Center in Beaumont, Texas, U.S. were exposed to 0, 8 or 16 kJ m−2 day−1 UV-B radiation for 90 days. Our results showed differences among southern US rice cultivars in response to UV-B treatments with respect to leaf photosynthetic rate (Pn), leaf phenolic concentration, pollen germination (PG), spikelet fertility (SF), leaf number, leaf area, and yield. For most of the cultivars, plants exposed to enhanced UV-B radiation showed decreased Pn, PG, SF and yield and increased spikelet abortion and leaf phenolic concentration compared to the plants grown in a UV-B-free environment. In this study, cultivar ‘Clearfield XL729’ performed better than the other cultivars under enhanced UV-B radiation.  相似文献   

15.
The coastal shrub Limoniastrum monopetalum is capable of growth in soil containing extremely high concentrations of heavy metals. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0–130 mmol l−1) on growth and photosynthetic performance, by measuring relative growth rate, total leaf area, plant height, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, sulphur, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. The study species demonstrated hypertolerance to Zn stress, since survival was recorded with leaf concentrations of up to 1700 mg Zn kg−1 dry mass when treated with 130 mmol Zn l−1. L. monopetalum exhibited little overall effects on photosynthetic function at Zn levels of up to 90 mmol l−1. At greater external Zn concentration, plant growth was negatively affected, due in all probability to the recorded decline in net photosynthetic rate, which may be linked to the adverse effect of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1400 mg Zn kg−1 dry mass thus indicating that this species could play an important role in the phytoremediation of Zn-polluted areas.  相似文献   

16.
Reflective leaf pubescence of the desert shrub Encelia farinosa (brittlebrush) reduces leaf temperature and plant water loss, and is considered adaptive in xeric environments. Yet, little is known about intraspecific variation in this trait. Among three populations in the northern range of E. farinosa, which span a very broad precipitation gradient, both leaf absorptance variation and differences in the timing of drought-induced leaf loss were broadly associated with climatic variability. Where mean annual rainfall was greatest, drought-induced leaf loss was earliest, but these plants also had higher population-level mean leaf absorptance values. Higher absorptance increases the relative dependence on latent heat transfer (transpirational cooling), but it also provides greater instantaneous carbon assimilation. Plants at the driest site reached lower leaf absorptance values and maintained leaves longer into the drought period. Lower leaf absorptance reduces water consumption, and extended leaf longevity may buffer against the unpredictability of growing conditions experienced in the driest site. These observations are consistent with a trade-off scenario in which plants from wetter regions might trade off water conservation for higher instantaneous carbon gain, whereas plants from drier regions reduce water consumption and extend leaf longevity to maintain photosynthetic activity in the face of unpredictable growing conditions. Received: 2 April 1997 / Accepted: 11 August 1997  相似文献   

17.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

18.
Studies of epiphytic dinoflagellates in Peter the Great Bay, Sea of Japan in 2008–2011 revealed the presence of 13 species. Five of the species are known as potentially toxic: Amphidinium carterae, A. operculatum, Ostreopsis cf. ovata, O. cf. siamensis and Prorocentrum lima. The maximum species richness and abundance of epiphytic dinoflagellates were observed in autumn (from September to October). Ostreopsis spp. were most widely distributed and predominated, amounting to 99% of the total density of dinoflagellates. Multi-year seasonal dynamics of Ostreopsis spp. in Peter the Great Bay showed that these cells appear as epiphyton in August after maximum warming of surface waters (22–24 °С) and disappear in early November, when the water temperature decreases below 7 °С. Ostreopsis spp. proliferation occurred in September, when the water temperature was 17.2–21.0 °C. The highest densities of Ostreopsis spp. were recorded on September 9, 2010 on the rhodophyte Neorhodomela aculeata – 230 × 103 cells g−1 DW or 52 × 103 cells g−1 FW. The spatial distribution of epiphytic dinoflagellates was investigated in the near-shore areas of Peter the Great Bay during the second half of September 2010 to evaluate the role of hydrodynamic conditions. Epiphytic dinoflagellates were not found in sheltered sites having weak mixing hydrodynamics. However, the abundances of Ostreopsis spp. were significantly higher at sites having moderate turbulence compared to biotopes experiencing strong wave action. Densities of Ostreopsis spp. were not significantly different on macrophytes with branched thallus of all taxonomic divisions. However, the average cell densities of Ostreopsis spp. on green algae with branched thallus were significantly higher than on green algae having laminar thallus.  相似文献   

19.
Environmental stress can affect development and yield of tomato plants. This study was undertaken to investigate the underlying mechanism asserted by kaolin on tomato physiology by evaluating its effect on leaf, canopy and inner fruit temperatures, gas exchange at the leaf and canopy scales, above ground biomass, yield and fruit quality.The study was carried out under field conditions in Southern Italy. Treatments were plants treated with kaolin-based particle film (Surround® WP) suspension and untreated plants (control).Kaolin application slightly increased leaf and canopy scale temperatures by 1.0 and 0.4 °C, respectively, transpiration rate decreased at both scales. On calm days (wind speed <0.5 m s?1) with a prevalently clear sky at midday, inner fruit temperature (tf) of kaolin-treated plants was 4.4 °C lower than the tf of control plants, while in days with clear sky-windy, and cloudy-calm, the tf did not differ.At leaf scale, net assimilation was reduced by 26% in kaolin-coated treatments. Stomatal conductance decreased by 53%, resulting in reductions of 34 and 15% in transpiration and internal CO2 concentration, respectively. Gas exchange parameters measured at canopy scale were similarly affected. In kaolin-treated plants, assimilation and evapotranspiration rates were reduced by 17 and 20%, respectively, while dark respiration was not affected. Above ground dry biomass decreased by 6.4%.Marketable yield in kaolin-treated plants was 21% higher than those measured in control plants; this is possibly related to the 96 and 79% reduction in sunburned fruit and those damaged by insects, respectively, and to the 9% increase in mean fruit weight. Kaolin treatment increased lycopene fruit content by 16%, but did not affect total soluble solids content, fruit dry matter, juice pH, titratable acidity or tomato fruit firmness. The use of kaolin-based particle film technology would be an effective tool to alleviate heat stress and to reduce water stress in tomato production under arid and semi-arid conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号